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Preface
I’ve  always  enjoyed  explaining  physics.  For  me  it’s  much  more
than teaching:  It’s  a way of  thinking.  Even when I’m at  my desk
doing research, there’s a dialog going on in my head. Figuring out
the  best  way to  explain  something  is  almost  always  the  best  way
to understand it yourself.

About ten years ago someone asked me if I would teach a
course for the public. As it happens, the Stanford area has a lot of
people who once wanted to study physics, but life got in the way.
They had had all kinds of careers but never forgot their one-time
infatuation  with  the  laws  of  the  universe.  Now,  after  a  career  or
two, they wanted to get back into it, at least at a casual level.

Unfortunately  there  was  not  much  opportunity  for  such
folks  to  take  courses.  As  a  rule,  Stanford  and  other  universities
don’t  allow outsiders  into  classes,  and,  for  most  of  these  grown-
ups,  going  back  to  school  as  a  full-time  student  is  not  a  realistic
option. That bothered me. There ought to be a way for people to
develop  their  interest  by  interacting  with  active  scientists,  but
there didn’t seem to be one. 

That’s  when  I  first  found  out  about  Stanford’s
Continuing  Studies  program.  This  program  offers  courses  for
people in the local nonacademic community.  So I thought that it
might  just  serve  my  purposes  in  finding  someone  to  explain
physics  to,  as  well  as  their  purposes,  and it  might  also  be  fun  to
teach  a  course  on  modern  physics.  For  one  academic  quarter
anyhow.

It  was  fun.  And  it  was  very  satisfying  in  a  way  that
teaching  undergraduate  and  graduate  students  was  sometimes
not.  These  students  were  there  for  only  one  reason:  Not  to  get
credit,  not to get a degree, and not to be tested, but just  to learn
and indulge their curiosity. Also, having been “around the block”
a  few  times,  they  were  not  at  all  afraid  to  ask  questions,  so  the
class  had  a  lively  vibrancy  that  academic  classes  often  lack.  I
decided to do it again. And again.

What  became  clear  after  a  couple  of  quarters  is  that  the
students  were  not  completely  satisfied  with  the  layperson’s
courses  I  was  teaching.  They  wanted  more  than  the  Scientific
American experience. A lot of them had a bit of background, a bit
of physics, a rusty but not dead knowledge of calculus, and some
experience  at  solving  technical  problems.  They  were  ready  to  try
their  hand  at  learning  the  real  thing—with  equations.  The  result
was a sequence of courses intended to bring these students to the
forefront of modern physics and cosmology.

Fortunately, someone (not I) had the bright idea to video-
record the classes. They are out on the Internet, and it seems that
they  are  tremendously  popular:  Stanford  is  not  the  only  place
with people hungry to learn physics. From all over the world I get
thousands  of  e-mail  messages.  One  of  the  main  inquiries  is
whether I will ever convert the lectures into books? The Theoretical
Minimum is the answer.

The term theoretical minimum was not my own invention. It
originated  with  the  great  Russian  physicist  Lev  Landau.  The  TM
in  Russia  meant  everything  a  student  needed  to  know  to  work
under  Landau  himself.  Landau  was  a  very  demanding  man:  His
theoretical minimum meant just about everything he knew, which
of course no one else could possibly know.

I  use  the  term  differently.  For  me,  the  theoretical
minimum means just what you need to know in order to proceed
to  the  next  level.  It  means  not  fat  encyclopedic  textbooks  that
explain  everything,  but  thin  books  that  explain  everything
important. The books closely follow the Internet courses that you
will find on the Web.

Welcome,  then,  to  The  Theoretical  Miniumum—Classical
Mechanics, and good luck!
Leonard Susskind
Stanford, California, July 2012
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I  started  to  teach  myself  math  and  physics  when  I  was  eleven.
That  was  forty  years  ago.  A  lot  of  things  have  happened  since
then—I am one of those individuals  who got sidetracked by life.
Still,  I  have  learned  a  lot  of  math  and  physics.  Despite  the  fact
that  people  pay  me  to  do  research  for  them,  I  never  pursued  a
degree.

For  me,  this  book  began  with  an  e-mail.  After  watching
the lectures that form the basis for the book, I wrote an e-mail to
Leonard  Susskind  asking  if  he  wanted to  turn  the  lectures  into  a
book. One thing led to another, and here we are. 

We could not fit everything we wanted into this book, or
it  wouldn’t  be  The  Theoretical  Minimum—Classical  Mechanics,  it
would be A-Big-Fat-Mechanics-Book. That is what the Internet is
for:  Taking up large quantities  of  bandwidth to display  stuff  that
doesn’t  fit  elsewhere!  You  can  find  extra  material  at  the  website
www.madscitech.org/tm.  This  material  will  include  answers  to
the  problems,  demonstrations,  and  additional  material  that  we
couldn’t put in the book. 

I  hope  you  enjoy  reading  this  book  as  much  as  we
enjoyed writing it.
George Hrabovsky
Madison, Wisconsin, July 2012
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Lecture 1: The Nature of Classical 
Physics

Somewhere  in  Steinbeck  country  two  tired  men  sit  down  at  the
side of the road. Lenny combs his beard with his fingers and says,
“Tell me about the laws of physics, George.” George looks down
for  a  moment,  then  peers  at  Lenny  over  the  tops  of  his  glasses.
“Okay, Lenny, but just the minimum.”

What Is Classical Physics?

The  term  classical  physics  refers  to  physics  before  the  advent  of
quantum  mechanics.  Classical  physics  includes  Newton’s
equations for the motion of particles, the Maxwell-Faraday theory
of  electromagnetic  fields,  and  Einstein’s  general  theory  of
relativity.  But  it  is  more  than  just  specific  theories  of  specific
phenomena;  it  is  a  set  of  principles  and  rules—an  underlying
logic—that  governs  all  phenomena  for  which  quantum
uncertainty  is  not  important.  Those  general  rules  are  called
classical mechanics.

The  job  of  classical  mechanics  is  to  predict  the  future.
The  great  eighteenth-century  physicist  Pierre-Simon  Laplace  laid
it out in a famous quote:

We may regard the present  state  of  the universe  as the effect  of  its  past
and  the  cause  of  its  future.  An  intellect  which  at  a  certain  moment
would  know  all  forces  that  set  nature  in  motion,  and  all  positions
of  all  items  of  which  nature  is  composed,  if  this  intellect  were  also  vast
enough  to  submit  these  data  to  analysis,  it  would  embrace  in  a  single
formula  the  movements  of  the  greatest  bodies  of  the  universe  and  those
of  the  tiniest  atom;  for  such  an  intellect  nothing  would  be  uncertain
and the future just like the past would be present before its eyes.
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In  classical  physics,  if  you  know  everything  about  a  system  at
some  instant  of  time,  and  you  also  know  the  equations  that
govern how the system changes, then you can predict the future.
That’s  what  we  mean  when  we  say  that  the  classical  laws  of
physics are deterministic. If we can say the same thing, but with the
past  and  future  reversed,  then  the  same  equations  tell  you
everything about the past. Such a system is called reversible. 

Simple Dynamical Systems and the Space of States

A collection  of  objects—particles,  fields,  waves,  or  whatever—is
called a system.  A system that is  either the entire universe or is so
isolated  from  everything  else  that  it  behaves  as  if  nothing  else
exists is a closed system.

Exercise  1:  Since  the  notion  is  so  important  to
theoretical  physics,  think  about  what  a  closed  system is
and  speculate  on  whether  closed  systems  can  actually
exist.  What  assumptions  are  implicit  in  establishing  a
closed system? What is an open system?

To get an idea of what deterministic and reversible mean,
we are going to begin with some extremely simple closed systems.
They  are  much  simpler  than  the  things  we  usually  study  in
physics, but they satisfy rules that are rudimentary versions of the
laws of  classical  mechanics.  We begin with an example that  is  so
simple  it  is  trivial.  Imagine  an  abstract  object  that  has  only  one
state.  We could  think  of  it  as  a  coin  glued  to  the  table—forever
showing  heads.  In  physics  jargon,  the  collection  of  all  states
occupied  by  a  system  is  its  space  of  states,  or,  more  simply,  its
state-space.  The  state-space  is  not  ordinary  space;  it’s  a
mathematical  set  whose  elements  label  the  possible  states  of  the
system.  Here  the  state-space  consists  of  a  single  point—namely
Heads  (or  just  H)—because  the  system  has  only  one  state.
Predicting the future of this  system is  extremely simple:  Nothing
ever happens and the outcome of any observation is always H.

The  next  simplest  system  has  a  state-space  consisting  of
two  points;  in  this  case  we  have  one  abstract  object  and  two
possible  states.  Imagine  a  coin  that  can  be  either  Heads  or  Tails
(H or T).  See Figure 1.
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T

H

Figure 1: The space of two states.

In  classical  mechanics  we  assume  that  systems  evolve
smoothly,  without  any  jumps  or  interruptions.  Such  behavior  is
said to be continuous.  Obviously  you cannot move between Heads
and  Tails  smoothly.  Moving,  in  this  case,  necessarily  occurs  in
discrete  jumps.  So  let’s  assume that  time comes  in  discrete  steps
labeled by integers.  A world whose evolution is discrete could be
called stroboscopic.

A  system  that  changes  with  time  is  called  a
dynamical system. A dynamical system consists of more than a space
of  states.  It  also  entails  a  law  of  motion,  or  dynamical  law.  The
dynamical  law  is  a  rule  that  tells  us  the  next  state  given  the
current state.
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One very simple  dynamical  law is  that  whatever the state
at  some  instant,  the  next  state  is  the  same.  In  the  case  of  our
example, it has two possible histories: H H H H H H . . . and T T
T T T T . . . .

Another dynamical law dictates that whatever the current
state,  the  next  state  is  the  opposite.  We  can  make  diagrams  to
illustrate  these  two  laws.  Figure  2  illustrates  the  first  law,  where
the  arrow  from  H  goes  to  H  and  the  arrow  from  T  goes  to  T.
Once again it is easy to predict the future: If you start with H, the
system stays H; if you start with T, the system stays T.

T

H

Figure 2: A dynamical law for a two-state system.

A diagram for the second possible law is shown in Figure
3, where the arrows lead from H to T and from T to H. You can
still  predict  the  future.  For  example,  if  you  start  with  H  the
history will be H T H T H T H T H T . . . .  If you start with T
the history is T H T H T H T H . . . .

TH

Figure 3: Another dynamical law for a two-state system.

We can even write these dynamical laws in equation form.
The  variables  describing  a  system  are  called  its  degrees  of  freedom.
Our coin has one degree of freedom, which we can denote by the
greek  letter  sigma,  Σ.  Sigma has  only  two possible  values;  Σ = 1
and Σ = -1, respectively,  for  H and T.  We also use a symbol  to
keep  track  of  the  time.  When  we  are  considering  a  continuous
evolution  in  time,  we  can  symbolize  it  with  t .  Here  we  have  a
discrete evolution and will  use n.  The state at time n  is  described
by the symbol ΣHnL, which stands for Σ at n.

Let’s  write  equations  of  evolution  for  the  two  laws.  The
first law says that no change takes place. In equation form,
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discrete evolution and will  use n.  The state at time n  is  described
by the symbol ΣHnL, which stands for Σ at n.

Let’s  write  equations  of  evolution  for  the  two  laws.  The
first law says that no change takes place. In equation form,

Σ Hn + 1L = Σ HnL .

In  other  words,  whatever  the  value  of  Σ  at  the  nth  step,  it  will
have the same value at the next step.

The second equation of evolution has the form

Σ Hn + 1L = -Σ HnL,
implying that the state flips during each step.

Because  in  each  case  the  future  behavior  is  completely
determined by the initial state, such laws are deterministic. All the
basic laws of classical mechanics are deterministic.

To  make  things  more  interesting,  let’s  generalize  the
system by increasing  the  number  of  states.  Instead  of  a  coin,  we
could  use  a  six-sided  die,  where  we  have  six  possible  states  (see
Figure 4).

Now  there  are  a  great  many  possible  laws,  and  they  are
not  so  easy  to  describe  in  words—or  even  in  equations.  The
simplest  way  is  to  stick  to  diagrams  such  as  Figure  5.  Figure  5
says  that  given  the  numerical  state  of  the  die  at  time  n,  we
increase  the  state  one  unit  at  the  next  instant  n + 1.  That  works
fine until  we get to 6,  at  which point  the diagram tells  you to go
back to  1  and repeat  the  pattern.  Such a  pattern  that  is  repeated
endlessly is called a cycle.  For example, if  we start  with 3 then the
history is 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, . . . . We’ll call this pattern
Dynamical Law 1.
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Figure 4: A six-state system.
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Figure 5: Dynamical Law 1.

Figure 6 shows another law, Dynamical Law 2. It looks a
little messier than the last case, but it’s logically identical—in each
case  the  system  endlessly  cycles  through  the  six  possibilities.  If
we  relabel  the  states,  Dynamical  Law  2  becomes  identical  to
Dynamical Law 1.

Not all laws are logically the same. Consider, for example,
the  law  shown  in  Figure  7.  Dynamical  Law  3  has  two  cycles.  If
you  start  on  one  of  them,  you  can’t  get  to  the  other.
Nevertheless,  this  law  is  completely  deterministic.  Wherever  you
start,  the future is  determined.  For example, if  you start  at 2, the
history  will  be 2,  6,  1,  2,  6,  1,  .  .  .  and you will  never get to 5.  If
you start at 5 the history is 5, 3, 4, 5, 3, 4, . . . and you will never
get to 6.
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Figure 6: Dynamical Law 2.
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Figure 7: Dynamical Law 3.

Figure 8 shows Dynamical Law 4 with three cycles.
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6

Figure 8: Dynamical Law 4.
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It  would take a  long time to write  out  all  of  the possible
dynamical laws for a six-state system.

Exercise 2: Can you think of a general way to classify the
laws that are possible for a six-state system?

Rules That Are Not Allowed: The Minus-First Law

According  to  the  rules  of  classical  physics,  not  all  laws  are  legal.
It’s  not  enough  for  a  dynamical  law  to  be  deterministic;  it  must
also be reversible.

The meaning of reversible—in the context of physics—can
be  described  a  few different  ways.  The  most  concise  description
is to say that if you reverse all the arrows, the resulting law is still
deterministic. Another way, is to say the laws are deterministic into the
past  as  well  as  the  future.  Recall  Laplace’s  remark,  “for  such  an
intellect  nothing  would  be  uncertain  and  the  future  just  like  the
past would be present before its eyes.” Can one conceive of laws
that  are  deterministic  into  the  future,  but  not  into  the  past?  In
other  words,  can  we  formulate  irreversible  laws?  Indeed  we  can.
Consider Figure 9.

1

2

3

Figure 9: A system that is irreversible.

The law of Figure 9 does tell you, wherever you are, where to go
next.  If  you  are  at  1,  go  to  2.  If  at  2,  go  to  3.  If  at  3,  go  to  2.
There is no ambiguity about the future. But the past is a different
matter.  Suppose  you  are  at  2.  Where  were  you  just  before  that?
You  could  have  come from  3  or  from  1.  The  diagram just  does
not tell you. Even worse, in terms of reversibility, there is no state
that  leads  to  1;  state  1  has  no  past.  The  law  of  Figure  9  is
irreversible. It illustrates just the kind of situation that is prohibited
by the principles of classical physics.

Notice  that  if  you  reverse  the  arrows  in  Figure  9  to  give
Figure  10,  the  corresponding  law fails  to  tell  you where  to  go in
the future.
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1

2

3

Figure 10: A system that is not deterministic into the future.

There  is  a  very  simple  rule  to  tell  when  a  diagram
represents  a  deterministic  reversible  law.  If  every  state  has  a
single unique arrow leading into it, and a single arrow leading out
of  it,  then  it  is  a  legal  deterministic  reversible  law.  Here  is  a
slogan:  There  must  be  one  arrow  to  tell  you  where  you’re  going  and one  to
tell you where you came from.

The  rule  that  dynamical  laws  must  be  deterministic  and
reversible  is  so  central  to  classical  physics  that  we  sometimes
forget to mention it when teaching the subject.  In fact, it doesn't
even have a name. We could call it the first law, but unfortunately
there  are  already  two  first  laws—Newton's  and  the  first  law  of
thermodynamics.  There is  evan a zeroth law of thermodynamics.
So we have to go back to a minus-first law to gain priority for what
is  undoubtedly  the  most  fundamental  of  all  physical  laws—the
conservation  of  information.  The  conservation  of  information  is
simply  the  rule  that  every  state  has  one  arrow  in  and  one  arrow
out. It ensures that you never lose track of where you started.

The  conservation  of  information  is  not  a  conventional
conservation  law.  We  will  return  to  conservation  laws  after  a
digression into systems with infinitely many states.
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The  conservation  of  information  is  not  a  conventional
conservation  law.  We  will  return  to  conservation  laws  after  a
digression into systems with infinitely many states.

Dynamical Systems with an Infinite Number of States

So  far,  all  our  examples  have  had  state-spaces  with  only  a  finite
number  of  states.  There  is  no  reason  why  you  can’t  have  a
dynamical system with an infinite number of states. For example,
imagine  a  line  with  an  infinite  number  of  discrete  points  along
it—like a train track with an infinite sequence of stations in both
directions.  Suppose  that  a  marker  of  some  sort  can  jump  from
one point  to another according to some rule.  To describe such a
system,  we  can  label  the  points  along  the  line  by  integers  the
same way we labeled the discrete instants of time above. Because
we  have  already  used  the  notation  n  for  the  discrete  time  steps,
let’s use an uppercase N  for points on the track. A history of the
marker  would  consist  of  a  function  NHnL,  telling  you  the  place
along  the  track  N  at  every  time  n.  A short  portion  of  this  state-
space is shown in Figure 11.

º -1 0 1 2 3 º

Figure 11: State-space for an infinite system.

A very simple  dynamical  law for  such a system,  shown in Figure
12, is to shift the marker one unit in the positive direction at each
time step.
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º -1 0 1 2 3 º

Figure 12: A dynamical rule for an infinite system.

This  is  allowable  because  each  state  has  one  arrow  in  and  one
arrow  out.  We  can  easily  express  this  rule  in  the  form  of  an
equation.

(1)N Hn + 1L = N HnL + 1

Here are some other possible rules, but not all are allowable.

(2)N Hn + 1L = N HnL - 1

(3)N Hn + 1L = N HnL + 2

(4)N Hn + 1L = N HnL2

(5)N Hn + 1L = -1N HnL N HnL

Exercise  3:  Determine  which  of  the  dynamical  laws
shown in Eq.s (2) through (5) are allowable.

In  Eq.  (1),  wherever  you  start,  you  will  eventually  get  to
every  other  point  by  either  going  to  the  future  or  going  to  the
past.  We say that  there is  a single  infinite  cycle. With Eq. (3),  on
the other  hand,  if  you start  at  an odd value of N ,  you will  never
get  to  an  even  value,  and  vice  versa.  Thus  we  say  there  are  two
infinite cycles.

We  can  also  add  qualitatively  different  states  to  the
system to create more cycles, as shown in Figure 13.
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º -1 0 1 2 3 º

BA

Figure 13: Breaking an infinite configuration space into 
finite and infinite cycles.

If we start  with a number,  then we just keep proceeding through
the upper  line,  as  in Figure  12.  On the other  hand,  if  we start  at
A or B, then we cycle between them. Thus we can have mixtures
where  we  cycle  around  in  some  states,  while  in  others  we  move
off to infinity.

Cycles and Conservation Laws

When the  state-space  is  separated  into  several  cycles,  the  system
remains  in  whatever  cycle  it  started  in.  Each  cycle  has  its  own
dynamical  rule,  but  they  are  all  part  of  the  same  state-space
because  they  describe  the  same  dynamical  system.  Let’s  consider
a  system with  three  cycles.  Each of  states  1  and 2  belongs  to  its
own cycle, while 3 and 4 belong to the third (see Figure 14).

1

2
34

Figure 14: Separating the state-space into cycles.

Whenever  a  dynamical  law  divides  the  state-space  into
such  separate  cycles,  there  is  a  memory  of  which  cycle  they
started in. Such a memory is called a conservation law; it tells us that
something  is  kept  intact  for  all  time.  To  make  the  conservation
law quantitative, we give each cycle a numerical value called Q. In

the  example  in  Figure  15  the  three  cycles  are  labeled  Q = +1,

Q = -1,  and  Q = 0.  Whatever  the  value  of  Q,  it  remains  the

same  for  all  time  because  the  dynamical  law  does  not  allow
jumping from one cycle to another. Simply stated, Q is conserved.
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-1

+1
00

Figure 15: Labeling the cycles with specific values of a 
conserved quantity.

In  later  chapters  we  will  take  up  the  problem  of
continuous  motion  in  which  both  time  and  the  state-space  are
continuous.  All  of  the  things  that  we  discussed  for  simple
discrete systems have their  analogs for  the more realistic systems
but  it  will  take  several  chapters  before  we  see  how  they  all  play
out.

The Limits of Precision

Laplace  may  have  been  overly  optimistic  about  how  predictable
the  world  is,  even  in  classical  physics.  He  certainly  would  have
agreed  that  predicting  the  future  would  require  a  perfect
knowledge of  the dynamical  laws governing the world,  as  well  as
tremendous  computing  power—what  he  called  an  “intellect  vast
enough  to  submit  these  data  to  analysis.”  But  there  is  another
element that he may have underestimated: the ability to know the
initial  conditions  with  almost  perfect  precision.  Imagine  a  die
with  a  million  faces,  each  of  which  is  labeled  with  a  symbol
similar  in  appearance  to  the  usual  single-digit  integers,  but  with
enough  slight  differences  so  that  there  are  a  million
distinguishable  labels.  If  one knew the dynamical  law,  and if  one
were  able  to  recognize  the  initial  label,  one  could  predict  the
future  history  of  the  die.  However,  if  Laplace’s  vast  intellect
suffered from a slight vision impairment, so that he was unable to
distinguish  among  similar  labels,  his  predicting  ability  would  be
limited.

In  the  real  world,  it’s  even  worse;  the  space  of  states  is
not only huge in its number of points—it is continuously infinite.
In other words,  it  is labeled by a collection of real numbers such
as  the  coordinates  of  the  particles.  Real  numbers  are  so  dense
that  every  one  of  them  is  arbitrarily  close  in  value  to  an  infinite
number  of  neighbors.  The  ability  to  distinguish  the  neighboring
values  of  these  numbers  is  the  “resolving  power”  of  any
experiment, and for any real observer it is limited. In principle we
cannot know the initial conditions with infinite precision. In most
cases the tiniest  differences  in the initial  conditions—the starting
state—leads  to  large  eventual  differences  in  outcomes.  This
phenomenon is called chaos. If a system is chaotic (most are), then
it  implies  that  however  good  the  resolving  power  may  be,  the
time  over  which  the  system  is  predictable  is  limited.  Perfect
predictability  is  not  achievable,  simply  because  we  are  limited  in
our resolving power.
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Interlude 1: Spaces, Trigonometry, and 
Vectors

“Where are we, George?”

George pulled out his map and spread it out in front of
Lenny.  “We’re  right  here  Lenny,  coordinates  36.60709N,
–121.618652W.”

“Huh? What’s a coordinate George?”

Coordinates

To  describe  points  quantitatively,  we  need  to  have  a  coordinate
system. Constructing a coordinate system begins with choosing a
point of space to be the origin. Sometimes the origin is chosen to
make the equations especially simple.  For  example,  the theory of
the  solar  system  would  look  more  complicated  if  we  put  the
origin  anywhere  but  at  the  Sun.  Strictly  speaking,  the  location  of
the  origin  is  arbitrary—put  it  anywhere—but  once  it  is  chosen,
stick with the choice.

The  next  step  is  to  choose  three  perpendicular  axes.
Again,  their  location  is  somewhat  arbitrary  as  long  as  they  are
perpendicular.  The axes are usually called x,  y,  and z  but we can

also  call  them  x1,  x2,  and  x3.   Such  a  system  of  axes  is  called  a
Cartesian coordinate system, as in Figure 1.



x

y

z

Figure 1. A three-dimensional Cartesian coordinate system.

We want to describe a certain point  in space; call  it  P.  It
can  be  located  by  giving  the  x, y, z  coordinates  of  the  point.  In

other  words,  we  identify  the  point  P  with  the  ordered  triple  of
numbers Hx, y, zL (see Figure 2).

x

y

z

P

Figure 2. A point in Cartesian space.

The  x  coordinate  represents  the  perpendicular  distance  of  P
from the plane defined by setting x = 0 (see Figure 3). The same
is  true  for  the  y  and  z  coordinates.  Because  the  coordinates

represent  distances  they  are  measured  in  units  of  length,  such  as
meters.
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P

Figure 3: A plane defined by setting x = 0, and the distance 
to P along the x axis.

When  we  study  motion,  we  also  need  to  keep  track  of
time. Again we start with an origin—that is, the zero of time. We
could pick the Big Bang to be the origin, or the birth of Jesus, or
just  the  start  of  an  experiment.  But  once  we  pick  it,  we  don't
change it.

Next  we  need  to  fix  a  direction  of  time.  The  usual
convention  is  that  positive  times  are  to  the  future  of  the  origin
and negative times are to the past. We could do it the other way,
but we won’t.

Finally,  we  need  units  for  time.  Seconds  are  the
physicist’s  customary  units,  but  hours,  nanoseconds,  or  years  are
also possible. Once having picked the units and the origin, we can
label any time by a number t .

There are two implicit assumptions about time in classical
mechanics. The first is that time runs uniformly—an interval of 1
second  has  exactly  the  same  meaning  at  one  time  as  at  another.
For example, it took the same number of seconds for a weight to
fall  from  the  Tower  of  Pisa  in  Galileo’s  time  as  it  takes  in  our
time. One second meant the same thing then as it does now.

The  other  assumption  is  that  times  can  be  compared  at
different  locations.  This  means  that  clocks  located  in  different
places  can  be  synchronized.  Given  these  assumptions,  the  four
coordinates—x, y, z, t—define  a  reference  frame.  Any  event  in  the

reference  frame  must  be  assigned  a  value  for  each  of  the
coordinates.

Given the function f HtL = t2, we can plot the points on a

coordinate  system.  We will  use  one  axis  for  time,  t ,  and  another
for the function, f HtL (see Figure 4).
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time. Again we start with an origin—that is, the zero of time. We
could pick the Big Bang to be the origin, or the birth of Jesus, or
just  the  start  of  an  experiment.  But  once  we  pick  it,  we  don't
change it.

Next  we  need  to  fix  a  direction  of  time.  The  usual
convention  is  that  positive  times  are  to  the  future  of  the  origin
and negative times are to the past. We could do it the other way,
but we won’t.

Finally,  we  need  units  for  time.  Seconds  are  the
physicist’s  customary  units,  but  hours,  nanoseconds,  or  years  are
also possible. Once having picked the units and the origin, we can
label any time by a number t .

There are two implicit assumptions about time in classical
mechanics. The first is that time runs uniformly—an interval of 1
second  has  exactly  the  same  meaning  at  one  time  as  at  another.
For example, it took the same number of seconds for a weight to
fall  from  the  Tower  of  Pisa  in  Galileo’s  time  as  it  takes  in  our
time. One second meant the same thing then as it does now.

The  other  assumption  is  that  times  can  be  compared  at
different  locations.  This  means  that  clocks  located  in  different
places  can  be  synchronized.  Given  these  assumptions,  the  four
coordinates—x, y, z, t—define  a  reference  frame.  Any  event  in  the

reference  frame  must  be  assigned  a  value  for  each  of  the
coordinates.

Given the function f HtL = t2, we can plot the points on a

coordinate  system.  We will  use  one  axis  for  time,  t ,  and  another
for the function, f HtL (see Figure 4).

1 2 3 4
t

5

10

15

f HtL

Figure 4: Plotting the points of f HtL = t2.

We  can  also  connect  the  dots  with  curves  to  fill  in  the  spaces
between the points (see Figure 5). 

1 2 3 4
t

5

10

15

f HtL

Figure 5: Joining the plotted points with curves.
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In this way we can visualize functions.

Exercise  1:  Using  a  graphing  calculator  or  a  program
like  Mathematica,  plot  each  of  the  following  functions.
See  the  next  section  if  you  are  unfamiliar  with  the
trigonometric functions.

f HtL = t4 + 3 t3 - 12 t2 + t - 6
g HxL = sin x - cos x
Θ HΑL = eΑ + Α ln Α
x HtL = sin2 x - cos x

Trigonometry

If  you have not  studied  trigonometry,  or  if  you studied  it  a  long
time ago, then this section is for you.

We  use  trigonometry  in  physics  all  the  time;  it  is
everywhere.  So  you  need  to  be  familiar  with  some  of  the  ideas,
symbols,  and  methods  used  in  trigonometry.  To  begin  with,  in
physics we do not generally use the degree as a measure of angle.
Instead  we  use  the  radian;  we  say  that  there  are  2 Π  radians  in
360°,  or  1 radian = Π � 180 °,  thus  90 ° = Π � 2  radians,  and
30 ° = Π � 6 radians. Thus a radian is about 57° (see Figure 6).

The  trigonometric  functions  are  defined  in  terms  of
properties  of  right  triangles.  Figure  7  illustrates  the  right  triangle
and its hypotenuse c , base b, and altitude a. The greek letter theta,
Θ,  is  defined  to  be  the  angle  opposite  the  altitude,  and  the  greek
letter phi, Φ, is defined to be the angle opposite the base.
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One radian

Radius

Figure 6: The radian as the angle subtended by an arc equal 
to the radius of the circle.

c a

b
Θ

Φ

Figure 7: A right triangle with segments and angles 
indicated.

We define the functions sine (sin), cosine (cos), and tangent (tan),
as  ratios  of  the  various  sides  according  to  the  following
relationships:

sin Θ =
a

c

cos Θ =
b

c

tan Θ =
a

b
=

sin Θ

cos Θ
.

We can graph  these functions to see how they vary
(see Figures 8 through 10).
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We can graph  these functions to see how they vary
(see Figures 8 through 10).

Π

2
Π

3 Π

2
2 Π

Θ

-1

1
sin Θ

Figure 8: Graph of the sine function.

Π

2
Π

3 Π

2
2 Π

Θ

-1

1
cos Θ

Figure 9: Graph of the cosine function.

Π

2
Π

3 Π

2
2 Π

Θ

tan Θ

Figure 10: Graph of the tangent function.

There  are  a  couple  of  useful  things  to  know  about  the
trigonometric  functions.  The  first  is  that  we  can  draw  a  triangle
within  a  circle,  with  the  center  of  the  circle  located  at  the  origin
of a Cartesian coordinate system, as in Figure 11.
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x

y

Θ

c

b

a

Figure 11: A right triangle drawn in a circle.

Here  the  line  connecting  the  center  of  the  circle  to  any  point
along its  circumference  forms  the  hypotenuse  of  a  right  triangle,
and  the  horizontal  and  vertical  components  of  the  point  are  the
base and altitude of  that  triangle.  The position  of  a point  can be
specified by two coordinates, x and y, where

x = c cos Θ

and

y = c sin Θ.

This  is  a  very  useful  relationship  between  right  triangles  and
circles.

Suppose a certain angle Θ is the sum or difference of two
other  angles  using  the greek letters  alpha,  Α,  and beta,  Β,  we can
write this angle, Θ, as Α ± Β. The trigonometric functions of Α ± Β

can  be  expressed  in  terms  of  the  trigonometric  functions  of  Α
and Β.
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sin HΑ + ΒL = sin Α cos Β + cos Α sin Β

sin HΑ - ΒL = sin Α cos Β - cos Α sin Β

cos HΑ + ΒL = cos Α cos Β - sin Α sin Β

cos HΑ - ΒL = cos Α cos Β + sin Α sin Β.

A final—very useful—identity is

(1)sin2 Θ + cos2 Θ = 1.

(Notice the notation used here: sin2 Θ = sin Θ sin Θ.) This equation
is  the  Pythagorean  theorem  in  disguise.  If  we  choose  the  radius

of  the  circle  in  Figure  11 to  be  1,  then the  sides  a  and b  are  the
sine  and cosine  of   Θ,   and  the  hypotenuse  is  1.  Equation  (1)  is
the  familiar  relation  among  the  three  sides  of  a  right  triangle:
a2 + b2 = c2.

Vectors

Vector  notation  is  another  mathematical  subject  that  we  assume
you  have  seen  before,  but—just  to  level  the  playing  field—let’s
review vector methods in ordinary three-dimensional space.

A  vector  can  be  thought  of  as  an  object  that  has  both  a
length  (or  magnitude)  and  a  direction  in  space.  An  example  is
displacement. If an object is moved from some particular starting
location, it is not enough to know how far it is moved in order to
know where  it  winds  up.  One  also  has  to  know the  direction  of
the  displacement.  Displacement  is  the  simplest  example  of  a
vector quantity. Graphically, a vector is depicted as an arrow with
a length and direction, as shown in Figure 12.
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Figure 12: A vector rÓ in Cartesian coordinates.

Symbolically  vectors  are  represented  by  placing  arrows  over

them. Thus the symbol for displacement is r
®

.  The magnitude, or
length,  of  a  vector  is  expressed  in  absolute-value  notation.  Thus

the length of r
®

 is denoted ¢ r
®¦.

Here are some operations  that  can be done with vectors.
First  of  all,  you  can  multiply  them  by  ordinary  real  numbers.
When  dealing  with  vectors  you  will  often  see  such  real  numbers
given  the  special  name  scalar.  Multiplying  by  a  positive  number
just  multiplies  the  length  of  the  vector  by  that  number.  But  you
can  also  multiply  by  a  negative  number,  which  reverses  the

direction  of  the  vector.  For  example  -2 r
®

is  the  vector  that  is

twice as long as r
®

 but points in the opposite direction.

Vectors  may  be  added.  To  add  A
®

 and  B
®

,  place  them  as
shown  in  Figure  13  to  form  a  quadrilateral  (this  way  the
directions of the vectors are preserved). The sum of the vectors is
the length and angle of the diagonal.
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A
®

+ B
®

A
®

B
®

Figure 13: Adding vectors.

If vectors can be added and if they can be multiplied by negative
numbers then they can be subtracted.

Exercise 2: Work out the rule for vector subtraction.

Vectors  can  also  be  described  in  component  form.  We
begin  with  three  perpendicular  axes  x, y, z.  Next,  we  define

three unit vectors that lie along these axes and have unit length. The
unit  vectors  along the  coordinate  axes  are  called basis  vectors.  The
three  basis  vectors  for  Cartesian  coordinates  are  traditionally

called i
ï

, j
ï

, and k
ï

 (see Figure 14). More generally, we write e`1, e`2,

and e`3  when we refer to Hx1, x2, x3L, where the symbol ^ (known
as a carat) tells us we are dealing with unit (or basis) vectors. The

basis  vectors  are  useful  because  any  vector  V
®

can  be  written  in
terms of them in the following way:

(2)V
®

= Vx i
ï

+ V y j
ï

+ Vz k
ï

.
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Figure 14: Basis vectors for a Cartesian coordinate system.

The  quantities  Vx ,  V y ,  and  Vz  are  numerical  coefficients  that

are  needed to  add up  the  basis  vectors  to  give  V
®

.  They  are  also

called  the  components  of  V
®

.  We  can  say  that  Eq.  (2)  is  a  linear
combination  of basis  vectors.  This  is  a fancy way of saying that we
add  the  basis  vectors  along  with  any  relevant  factors.  Vector
components  can  be  positive  or  negative.  We  can  also  write  a

vector  as  a  list  of  its  components—in  this  case  IVx , V y , Vz M.
The  magnitude  of  a  vector  can  be  given  in  terms  of  its
components  by  applying  the  three-dimensional  Pythagorean
theorem.

(3)V
®

= Vx
2 + V y

2 + Vz
2

We  can  multiply  a  vector  V
®

 by  a  scalar,  Α,  in  terms  of
components by multiplying each component by Α.

Α V
®

= IΑ Vx , Α V y , Α Vz M
We  can  write  the  sum  of  two  vectors  as  the  sum  of  the
corresponding components.
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We  can  write  the  sum  of  two  vectors  as  the  sum  of  the
corresponding components.

KA
®

+ B
®O

x
= HAx + BxL

KA
®

+ B
®O

y
= IA y + B yM

KA
®

+ B
®O

z
= IAz + Bz M.

Can we multiply vectors? Yes, and there is more than one
way.  One  type  of  product—the  cross  product—gives  another
vector.  For  now,  we will  not  worry  about  the  cross  product  and
only  consider  the  other  method,  the  dot  product.  The  dot  product

of two vectors is an ordinary number, a scalar. For vectors A
®

 and

B
®

 it is defined as follows:

A
®

× B
®

= £A® § £B®§ cos Θ.

Here Θ is the angle between the vectors. In ordinary language, the
dot product  is  the product  of  the magnitudes  of  the two vectors
and the cosine of the angle between them.

The  dot  product  can  also  be  defined  in  terms  of
components in the form

A
®

× B
®

= Ax Bx + A y B y + Az Bz .

This  makes  it  easy  to  compute  dot  products  given  the
components of the vectors.

Exercise 3: Show that the magnitude of a vector satisfies

£A® §2 = A
®

× A
®

 .
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Exercise 3: Show that the magnitude of a vector satisfies

£A® §2 = A
®

× A
®

 .

Exercise  4:  Let  HAx = 2,  A y = -3, Az = 1M  and

IBx = -4, B y = -3,Bz = 2M.  Compute  the  mag-  nitude  of

a  A
®

 and  B
®

,  their  dot  product,  and  the  angle  between
them.

An  important  property  of  the  dot  product  is  that  it  is
zero  if  the  vectors  are  orthogonal  (perpendicular).  Keep  this  in
mind because we will have occasion to use it to show that vectors
are orthogonal.

Exercise  5:  Determine  which  pair  of  vectors  are
orthogonal.  (1, 1,  1)  (2, -1, 3)  (3, 1, 0)  (-3, 0, 2 )

Exercise 6:  Can you explain why the dot  product  of  two
vectors that are orthogonal is 0?
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Lecture 2: Motion
Lenny complained, “George, this jumpy stroboscopic stuff makes
me  nervous.  Is  time  really  so  bumpy?  I  wish  things  would  go  a
little more smoothly.”

George  thought  for  a  moment,  wiping  the  blackboard,
“Okay,  Lenny,  today  let’s  study  systems  that  do  change
smoothly.”

Mathematical Interlude: Differential Calculus

In  this  book  we  will  mostly  be  dealing  with  how  various
quantities  change  with  time.  Most  of  classical  mechanics  deals
with  things  that  change  smoothly—continuously  is  the
mathematical  term—as  time  changes  continuously.  Dynamical
laws  that  update  a  state  will  have  to  involve  such  continuous
changes  of  time,  unlike  the  stroboscopic  changes  of  the  first
lecture.  Thus  we  will  be  interested  in  functions  of  the
independent variable t .

To  cope,  mathematically,  with  continuous  changes,  we
use  the  mathematics  of  calculus.  Calculus  is  about  limits,  so  let’s
get  that  idea  in  place.  Suppose  we  have  a  sequence  of  numbers,
l1, l2, l3, . . . ,  that  get  closer  and closer  to  some value L.  Here  is
an  example:   0.9,  0.99,  0.999,  0.9999,  .  .  .  .  The  limit  of  this
sequence  is  1.  None  of  the  entries  is  equal  to  1,  but  they  get
closer and closer to that value. To indicate this we write

lim
i®¥

li = L.

In words, L is the limit of li  as i goes to infinity.

We  can  apply  the  same  idea  to  functions.  Suppose  we
have a function,  f HtL,  and we want to describe how it  varies  as t

gets closer and closer to some value, say a. If f HtL gets arbitrarily

close to L  as  t  tends to a,  then we say that  the limit  of  f HtL  as  t

approaches a is the number L . Symbolically,



We  can  apply  the  same  idea  to  functions.  Suppose  we
have a function,  f HtL,  and we want to describe how it  varies  as t

gets closer and closer to some value, say a. If f HtL gets arbitrarily

close to L  as  t  tends to a,  then we say that  the limit  of  f HtL  as  t

approaches a is the number L . Symbolically,

lim
t®a

f HtL = L.

Let f HtL be a function of the variable t . As t  varies, so will

f HtL.  Differential  calculus  deals  with  the  rate  of  change  of  such

functions. The idea is to start with f HtL at some instant, and then

to change the time by a little bit and see how much f HtL changes.

The  rate  of  change  is  defined  as  the  ratio  of  the  change  in  f  to

the  change  in  t .  We  denote  the  change  in  a  quantity  with  the
uppercase  greek  letter  delta,  D.  Let  the  change  in  t  be  called  Dt .
(This  is  not  D � t ,  this  is  a  change  in  t .)  Over  the  interval  Dt ,  f

changes from f HtL to f Ht + DtL. The change in f , denoted D f , is

then given by

D f = f Ht + DtL - f HtL.
To define the rate of change precisely at time t ,  we must

let Dt  shrink to zero. Of course, when we do that D f  also shrinks

to zero,  but  if  we divide D f  by Dt ,  the  ratio  will  tend to  a  limit.

That limit is the derivative of f HtL with respect to t ,

(1)
d f HtL

dt
= lim

Dt®0

D f

Dt
= lim

Dt®0

f Ht + DtL - f HtL
Dt

.

A rigorous mathematician might frown on the idea that 

d f HtL
d t

 is  the  ratio  of  two  differentials,  but  you  will  rarely  make  a

mistake this way.
Let's  calculate  a  few  derivatives.  Begin  with  functions

defined by powers of t . In particular, let's illustrate the method by
calculating the derivative of f HtL = t2. We apply Eq. (1) and begin

by defining f Ht + DtL :
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d f HtL
d t

 is  the  ratio  of  two  differentials,  but  you  will  rarely  make  a

mistake this way.
Let's  calculate  a  few  derivatives.  Begin  with  functions

defined by powers of t . In particular, let's illustrate the method by
calculating the derivative of f HtL = t2. We apply Eq. (1) and begin

by defining f Ht + DtL :

f Ht + DtL = Ht + DtL2.

We can calculate Ht + DtL2  by direct multiplication or we can use
the binomial theorem. Either way,

f Ht + DtL = t2 + 2tDt + Dt2.

We now subtract f HtL:
f Ht + DtL - f HtL = t2 + 2tDt + Dt2 - t2

= 2tDt + Dt2.

The next step is to divide by Dt :

f Ht + DtL - f HtL
Dt

=
2tDt + Dt2

Dt
= 2t + Dt .

Now  it’s  easy  to  take  the  limit  Dt ® 0.  The  first  term  does  not
depend  on  Dt  and  survives,  but  the  second  term  tends  to  zero
and just disappears. This is something to keep in mind: Terms of
higher order in Dt  can be ignored when you calculate derivatives.
Thus

lim
Dt®0

f Ht + DtL - f HtL
Dt

= 2t

So the derivative of t2 is
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d It2M
dt

= 2t

Next  let  us  consider  a  general  power,  f HtL = tn.  To

caclulate  its  derivative,  we  have  to  calculate

f Ht + DtL = Ht + DtLn.  Here,  high  school  algebra  comes  in

handy:  The  result  is  given  by  the  binomial  theorem.  Given  two
numbers,  a  and  b,  we  would  like  to  calculate  Ha + bLn.  The
binomial theorem gives

Ha + bLn = an + nan-1b +
nHn - 1L

2
an-2b2 +

nHn - 1LHn - 2L
3

an-3b3 +

× × × +bn

How  long  does  the  expression  go  on?  If  n  is  an  integer,  it
eventually terminates after n + 1 terms. But the binomial theorem
is  more  general  than  that;  in  fact,  n  can  be  any  real  or  complex
number.  If  n  is  not  an  integer,  however,  the  expression  never
terminates;  it is an infinite series.  Happily, for our purposes,  only
the first two terms are important.

To calculate Ht + DtLn,  all  we have to  do is  plug in  a = t
and b = Dt  to get

f Ht + DtL = Ht + DtLn

= tn + ntn-1Dt + × × × .

All  the terms represented by the dots  shrink  to zero in the limit,
so we ignore them.

Now subtract f HtL (or tn),

D f = f Ht + DtL - f HtL
= tn + ntn-1Dt +

+
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nHn - 1L
2

tn-2Dt2 + × × × - tn

= ntn-1Dt +

nHn - 1L
2

tn-2Dt2 + × × × .

Now divide by Dt ,

D f

Dt
= ntn-1 +

nHn - 1L
2

tn-2Dt + × × × .

and let Dt ® 0. The derivative is then

dHtnL
dt

= ntn-1.

One important point is that this relation holds even if n is not an
integer; n can be any real or complex number.

Here are some special  cases  of  derivatives:  If  n = 0,  then
f HtL is just the number 1. The derivative is zero—this is the case

for  any  function  that  does’t  change.  If  n = 1,  then  f HtL = t  and

the  derivative  is  1—this  is  always  true  when  you  take  the
derivative  of  something  with  respect  to  itself.  Here  are  some
derivatives of powers

d It2M
dt

= 2t

d It3M
dt

= 3t2

d It4M
dt

= 4t3
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dHtnL
dt

= ntn-1 .

For future reference, here are some other derivatives:

(2)

dHsin tL
dt

= cos t

dHcos tL
dt

= -sint

dHet L
dt

= et

dHlog tL
dt

=
1

t
.

One comment about the third formula in Eq. (2),  
d Iet M

dt
= et .  The

meaning  of  et  is  pretty  clear  if  t  is  an  integer.  For  example,
e3 = e ´ e ´ e.  Its  meaning  for  non-integers  is  not  obvious.
Basically,  et  is  defined  by  the  property  that  its  derivative  is  equal
to itself. So the third formula is really a definition.

There  are  a  few  useful  rules  to  remember  about
derivatives.  You  can  prove  them  all  if  you  want  a  challenging
exercise.  The  first  is  the  fact  that  the  derivative  of  a  constant  is
always  0.  This  makes  sense;  the  derivative  is  the  rate  of  change,
and a constant never changes, so

dc

dt
= 0.

The  derivative  of  a  constant  times  a  function  is  the
constant times the derivative of the function:
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dHc f L
dt

= c
df

dt
.

Suppose we have two functions, f HtL and gHtL. Their sum

is also a function and its derivative is given by

dH f + gL
dt

=
dH f L
dt

+
dH gL
dt

.

This is called the sum rule.
Their  product  of  two  functions  is  another  function,  and

its derivative is

dH fgL
dt

= f HtL dH gL
dt

+ gHtL dH f L
dt

.

Not surprisingly, this is called the product rule.
Next,  suppose  that  gHtL  is  a  function  of  t ,  and  f H gL  is  a

function of g. That makes f  an implicit function of t . If you want to

know  what  f  is  for  some  t ,  you  first  compute  gHtL.  Then,

knowing  g,  you  compute  f H gL.  It’s  easy  to  calculate  the  t-

derivative of f :

df

dt
=

d f

d g

d g

d t
.

This  is  called  the  chain  rule.  This  would  obviously  be  true  if  the
derivatives were really ratios; in that case, the d g’s would cancel in

the  numerator  and  denominator.  In  fact,  this  is  one  of  those
cases  where  the  naive  answer  is  correct.  The  important  thing  to
remember  about  using  the  chain  rule  is  that  you  invent  an
intermediate  function,  gHtL,  to  simplify  f HtL  making  it  f H gL.  For

example, if
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f HtL = ln t3

and  we need  to  find  
d f

d t
,  then  the  t3  inside  the  logarithm might

be  a  problem.  Therefore,  we  invent  the  intermediate  function
g = t3, so we have f H gL = ln g. We can then apply the chain rule.

df

dt
=

d f

d g

d g

d t
.

We can use our differentiation formulas to note that 
d f

d g
=

1
g

 and

d g

d t
= 3t2, so

df

dt
=

3 t2

g
.

We can substitute g = t3, to get

df

dt
=

3 t2

t3
=

3

t
.

That is how to use the chain rule.
Using  these  rules,  you  can  calculate  a  lot  of  derivatives.

That’s basically all there is to differential calculus.

Exercise  1:  Calculate  the  derivatives  of  each  of  these
functions.

f HtL = t4 + 3 t3 - 12 t2 + t - 6
g HxL = sin x - cos x
Θ HΑL = eΑ + Α ln Α

x HtL = sin2 x - cos x
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Exercise  1:  Calculate  the  derivatives  of  each  of  these
functions.

f HtL = t4 + 3 t3 - 12 t2 + t - 6
g HxL = sin x - cos x
Θ HΑL = eΑ + Α ln Α

x HtL = sin2 x - cos x

Exercise  2:  The  derivative  of  a  derivative  is  called  the

second derivative and is written  d2 f HtL
dt2

. Take the second

derivative of each of the functions listed above.

Exercise  3:  Use  the  chain  rule  to  find  the  derivatives  of
each of the following functions.

gHtL = sinIt2M - cosIt2M
ΘHΑL = e3Α + 3ΑlnH3ΑL

xHtL = sin2It2M - cosIt2M

Exercise 4:  Prove the sum rule  (fairly  easy),  the product
rule  (easy  if  you  know  the  trick),  and  the  chain  rule
(fairly easy).

Exercise 5: Prove each of the formulas in Eq.s (2). Hint:

Look  up  trigonometric  identities  and  limit  properties  in  a

reference book.

Motion  37



Particle Motion

The concept of a point particle is an idealization. No object is so
small  that  it  is  a  point—not  even  an  electron.  But  in  many
situations  we  can  ignore  the  extended  structure  of  objects  and
treat  them as  points.  For  example,  the  planet  Earth  is  obviously
not  a  point,  but  in  calculating  its  orbit  around  the  Sun,  we  can
ignore the size of Earth to a high degree of accuracy.

The position of a particle is specified by giving a value for
each  of  the  three  spatial  coordinates,  and  the  motion  of  the
particle  is  defined  by  its  position  at  every  time.  Mathematically,
we  can  specify  a  position  by  giving  the  three  spatial  coordinates
as functions of t : xHtL, yHtL, zHtL.

The  position  can  also  be  thought  of  as  a  vector  r
®HtL

whose  components  are  x, y, z  at  time  t .  The  path  of  the

particle—its  trajectory—is  specified  by  r
®HtL.  The  job  of  classical

mechanics  is  to  figure  out  r
®HtL  from  some  initial  condition  and

some dynamical law.
Next  to  its  position,  the  most  important  thing  about  a

particle  is  its  velocity.  Velocity  is  also  a  vector.  To  define  it  we
need some calculus. Here is how we do it:

Consider  the displacement  of  the particle  between time t
and a  little  bit  later  at  time t + Dt .   During  that  time interval  the
particle  moves  from  xHtL, yHtL, zHtL  to  xHt + DtL, yHt + DtL,
zHt + DtL,  or,  in  vector  notation,  from  r

®HtL  to  r
®Ht + DtL.  The

displacement is defined as

Dx = xHt + DtL - xHtL
D y = yHt + DtL - yHtL
Dz = zHt + DtL - zHtL
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or

D r
®

= r
®Ht + DtL - r

®HtL.
The displacement  is  the small  distance that  the particle  moves in
the small time Dt . To get the velocity, we divide the displacement
by Dt  and take the limit as Dt  shrinks to zero. For example,

vx = lim
Dt®0

Dx

Dt
.

This—of  course—is  the  definition  of  the  derivative  of  x  with
respect to t .

vx =
dx

dt
= x

×

v y =
d y

d t
= y

×

vz =
dz

dt
= z

×
.

Placing a dot over a quantity is standard shorthand for taking the
time  derivative.  This  convention  can be  used  to  denote  the  time
derivative  of  anything,  not  just  the  position  of  a  particle.  For
example,  if   T  stands  for  the  temperature  of  a  tub  of  hot  water,

then  T
×

 will  represent  the rate of  change of  the temperature  with
time. It will be used over and over, so get familiar with it.

It  gets  tiresome  to  keep  writing  x, y, z,  so  we  will  often

condense  the  notation.  The  three  coordinates  x, y, z  are

collectively denoted by xi  and the velocity components by vi :
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vi =
dxi

dt
= x

×

i

where i takes the values x, y, z, or, in vector notation

v
®

=
d r

®

dt
= r

®
 

.

The velocity vector has a magnitude ¢ v
®¦,

¢ v
®¦2 = vx

2 + v y
2 + vz

2,

this represents  how fast the particle is moving, without regard to

the direction. The magnitude ¢ v
®¦ is called speed.

Acceleration is the quantity that tells you how the velocity
is  changing.  If  an  object  is  moving  with  a  constant  velocity
vector,  it  experiences  no  acceleration.  A  constant  velocity  vector
implies  not  only  a  constant  speed  but  also  a  constant  direction.
You  feel  acceleration  only  when  your  velocity  vector  changes,
either  in  magnitude  or  direction.  In  fact,  acceleration  is  the  time
derivative of velocity:

ai =
dvi

dt
= v

×

i

or, in vector notation,

a
®

= v
®
 

.

Because  vi is  the  time  derivative  of  xi  and  ai  is  the  time
derivative  of  vi ,  it  follows  that  acceleration  is  the  second  time-
derivative of xi ,
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ai =
d 2xi

dt2
= x

××

i ,

where the double-dot notation means the second time-derivative.

Examples of Motion

Suppose  a  particle  starts  to  move  at  time  t = 0  according  to  the
equations

xHtL = 0
yHtL = 0

zHtL = zH0L + vH0Lt -
1

2
gt2

The  particle  evidently  has  no  motion  in  the  x  and  y  directions

but moves along the z  axis. The constants zH0L and vH0L represent

the initial values of the position and velocity along the z  direction

at t = 0. We also consider g to be a constant.

Let’s  calculate  the  velocity  by  differentiating  with  respect
to time.

vxHtL = 0
v yHtL = 0

vzHtL = vH0L - gt .

The x  and y  components  of velocity are zero at all  times.  The z

component  of  velocity  starts  out  at  t = 0 being  equal  to  vH0L.  In
other words, vH0L is the initial condition for velocity.

As  time  progresses,  the  - gt  term  becomes  nonzero.

Eventually, it will overtake the initial value of the velocity, and the
particle will be found moving along in the negative z direction.

Now let's calculate the acceleration by differentiating with
respect to time again.
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As  time  progresses,  the  - gt  term  becomes  nonzero.

Eventually, it will overtake the initial value of the velocity, and the
particle will be found moving along in the negative z direction.

Now let's calculate the acceleration by differentiating with
respect to time again.

axHtL = 0
a yHtL = 0

azHtL = - g.

The acceleration along the z  axis is constant and negative. If the z

axis  were  to  represent  altitude,  the  particle  would  accelerate
downward in just the way a falling object would.

Next let’s consider an oscillating particle that moves back
and  forth  along  the  x  axis.  Because  there  is  no  motion  in  the
other  two  directions,  we  will  ignore  them.  A  simple  oscillatory
motion uses trigonometric functions:

xHtL = sin Ω t

where  the  lowercase  greek  letter  omega,  Ω,  is  a  constant.  The
larger  Ω,  the  more  rapid  the  oscillation.  This  kind  of  motion  is
called simple harmonic motion (see Figure 1).

t

x

Figure 1: Simple harmonic motion.

Let’s compute the velocity and acceleration. To do so, we need to
differentiate  xHtL  with  respect  to  time.  Here  is  the  result  of  the
first time-derivative:
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Let’s compute the velocity and acceleration. To do so, we need to
differentiate  xHtL  with  respect  to  time.  Here  is  the  result  of  the
first time-derivative:

vx =
d

dt
sin Ω t .

We  have  the  sine  of  a  product.  We  can  relabel  this  product  as
b = Ωt :

vx =
d

dt
sin b.

Using the chain rule,

vx =
d

db
sin b

d b

dt

or

vx = cos b
d

dt
HΩ tL

or

vx = Ω cos Ω t .

We get the acceleration by similar means:

ax = - Ω 2 sin Ω t .

Notice some interesting  things.  Whenever the position  x  is  at  its
maximum or minimum, the velocity is  zero. The opposite  is  also
true:  When  the  position  is  at  x = 0,  then  velocity  is  either  a
maximum or  a  minimum.  We say  that   position  and  velocity  are
90° out of phase. You can see this in Figure 2, representing xHtL,
and Figure 3, representing vHtL.
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Π

2
Π

3Π

2
2Π

Θ

-1

1
xHtL

Figure 2: Representing position.

Π

2
Π

3Π

2
2Π

Θ

-1

1
vHtL

Figure 3: Representing velocity.

The position and acceleration are also related, both being
proportional  to  sin Ω t .  But  notice  the  minus  sign  in  the
acceleration.  That  minus  sign  says  that  whenever  x  is  positive
(negative),  the  acceleration is  negative  (positive).  In  other  words,
wherever  the  particle  is,  it  is  being  accelerated  back  toward  the
origin.  In  technical  terms,  the  position  and  acceleration  are  180°
out of phase.

Exercise  6:  How  long  does  it  take  for  the  oscillating
particle to go through one full cycle of motion?

Next,  let’s  consider  a  particle  moving  with  uniform
circular motion about the origin. This means that it is moving in a
circle  at  a  constant  speed.  For  this  purpose,  we can ignore  the  z

axis and think of the motion in the x, y  plane. To describe it we

must  have  two  functions,  xHtL  and  yHtL.  To  be  specific  we  will

choose  the  particle  to  move  in  the  counterclockwise  direction.
Let the radius of the orbit be R.

It  is  helpful  to  visualize the motion  by projecting  it  onto
the  two  axes.  As  the  particle  revolves  around  the  origin,  x
oscillates between x = -R  and x = R.  The same is true of the y

coordinate. But the two coordinates are 90° out of phase; when x
is maximum y is zero, and vice versa.

The  most  general  (counterclockwise)  uniform  circular
motion about the origin has the mathematical form
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Next,  let’s  consider  a  particle  moving  with  uniform
circular motion about the origin. This means that it is moving in a
circle  at  a  constant  speed.  For  this  purpose,  we can ignore  the  z

axis and think of the motion in the x, y  plane. To describe it we

must  have  two  functions,  xHtL  and  yHtL.  To  be  specific  we  will

choose  the  particle  to  move  in  the  counterclockwise  direction.
Let the radius of the orbit be R.

It  is  helpful  to  visualize the motion  by projecting  it  onto
the  two  axes.  As  the  particle  revolves  around  the  origin,  x
oscillates between x = -R  and x = R.  The same is true of the y

coordinate. But the two coordinates are 90° out of phase; when x
is maximum y is zero, and vice versa.

The  most  general  (counterclockwise)  uniform  circular
motion about the origin has the mathematical form

x HtL = R cos Ω t
yHtL = R sin Ω t .

Here the parameter Ω is called the angular frequency. It is defined as
the number of radians that the angle advances in unit time. It also
has  to  do  with  how  long  it  takes  to  go  one  full  revolution,  the
period of motion—the same as we found in Exercise 6:

T =
2 Π

Ω

Now  it  is  easy  to  calculate  the  components  of  velocity  and
acceleration by differentiation:

(3)

vx = -R Ω sin Ω t
v y = R Ω cos Ω t

ax = -R Ω2 cos Ω t
a y = -R Ω2 sin Ω t

This  shows  an  interesting  property  of  circular  motion  that
Newton  used  in  analyzing  the  motion  of  the  moon:  The
acceleration  of  a  circular  orbit  is  parallel  to  the  position  vector,
but  it  is  oppositely  directed.  In  other  words,  the  acceleration
vector points radially inward toward the origin.
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This  shows  an  interesting  property  of  circular  motion  that
Newton  used  in  analyzing  the  motion  of  the  moon:  The
acceleration  of  a  circular  orbit  is  parallel  to  the  position  vector,
but  it  is  oppositely  directed.  In  other  words,  the  acceleration
vector points radially inward toward the origin.

Exercise  7:  Show  that  the  position  and  velocity  vectors
are orthogonal.

Exercise  8:  Calculate  the  velocity,  speed,  and
acceleration for each of the following position vectors. If
you  have  graphing  software,  plot  each  position  vector,
each velocity vector, and each acceleration vector.

r
®

= Hcos Ω t , eΩ t L
r
®

= Hcos HΩ t - ΦL, sin HΩ t - ΦLL
r
®

= Ic cos3 t , c sin3 tM
r
®

= Hc Ht - sin tL, c H1 - cos tLL
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Interlude 2: Integral Calculus
“George,  I  really  like  doing  things  backward.  Can  we  do
differentiation backward?”

“Sure we can, Lenny. It’s called integration.”

Integral Calculus

Differential  calculus  has  to  do  with  rates  of  change.  Integral
calculus has to do with sums of many tiny incremental quantities.
It’s  not immediately obvious that these have anything to do with
each other, but they do.

We begin with the graph of a function f HtL, as in Figure 1.

1 2 3 4 5
t

5

10

15

f HtL

Figure 1: The behavior of f HtL.

The  central  problem  of  integral  calculus  is  to  calculate  the  area
under  the  curve  defined  by  f HtL.  To  make  the  problem  well

defined, we consider the function between two values that we call
limits of integration, t = a and t = b. The area we want to calculate is
the area of the shaded region in Figure 2.



a b

1 2 3 4 5
t

5

10

15

f HtL

Figure 2: The limits of integration.

In order to do this,  we break the region into very thin rectangles
and add their areas (see Figure 3).

a b

1 2 3 4 5
t

5

10

15

f HtL

Figure 3: An illustration of integration.

Of  course  this  involves  an  approximation,  but  it  becomes
accurate  if  we  let  the  width  of  the  rectangles  tend  to  zero.  In
order  to  carry  out  this  procedure,  we  first  divide  the  interval
between t = a and t = b into a number, N , of subintervals—each
of width D t .  Consider the rectangle located at a specific value of
t .  The  width  is  D t  and  the  height  is  the  local  value  of  f HtL.  It

follows that the area of a single rectangle, ∆ A, is

∆ A = f HtL D t .

Now we add up all the areas of the individual  rectangles to get an
approximation  to  the  area  that  we  are  seeking.  The  approximate
answer is
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Now we add up all the areas of the individual  rectangles to get an
approximation  to  the  area  that  we  are  seeking.  The  approximate
answer is

A = â
i

f HtiL D t

where  the  uppercase  greek  letter  sigma,  S,  indicates  a  sum  of
successive values defined by i. So, if N = 3, then

A = â
3

i

f HtiL D t

= f Ht1L D t + f Ht2L D t + f Ht3L D t .

Here ti  is the position of the ith rectangle along the t  axis.
To  get  the  exact  answer,  we  take  the  limit  in  which  D t

shrinks to zero and the number of rectangles increases to infinity.
That  defines  the  definite  integral  of  f HtL  between  the  limits  t = a

and t = b. We write this as

A = à
a

b
f HtL d t = lim

D t®0
â

i

f HtiL D t .

The  integral  sign,  called  summa,  Ù,  replaces  the  summation  sign,
and—as  in  differential  calculus—D t  is  replaced  by  d t .  The
function f HtL is called the integrand.

Let’s  make a notational  change and call  one of  the limits
of  integration  T .  In  particular,  replace  b  by  T  and  consider  the
integral

à
a

T
f HtL d t

where  we  are  going  to  think  of  T  as  a  variable  instead  of  as  a
definite value of t . In this case, this integral defines a function of
T , which can take on any value of t . The integral is a function of
T  because it has a definite value for each value of T .

 49Integral Calculus



where  we  are  going  to  think  of  T  as  a  variable  instead  of  as  a
definite value of t . In this case, this integral defines a function of
T , which can take on any value of t . The integral is a function of
T  because it has a definite value for each value of T .

FHT L = à
a

T
f HtL d t .

Thus  a  given  function  f HtL  defines  a  second  function  FHT L.  We

could  also  let  a  vary,  but  we  won’t.  The  function  FHT L  is  called
the  indefinite  integral  of  f HtL.  It  is  indefinite  because  instead  of

integrating  from  a  fixed  value  to  a  fixed  value,  we  integrate  to  a
variable.  We  usually  write  such  an  integral  without  limits  of
integration,

(1)FHtL = à f HtL d t .

The fundamental theorem of calculus is one of the simplest and
most  beautiful  results  in  mathematics.  It  asserts  a  deep
connection between integrals  and derivatives.  What it  says is that

if FHT L = Ù f HtL d t , then

f HtL =
d FHtL

d t
.

To see this,  consider  a small  incremental  change in T  from T  to
T + D t . Then we have a new integral,

FHT + D tL = à
a

T+D t
f HtL d t .

In  other  words,  we have  added one  more  rectangle  of  width  D t
at  t = T  to  the  area  shaded  in  Figure  3.  In  fact,  the  difference
FHT + D tL - FHT L  is  just  the  area  of  that  extra  rectangle,  which
happens to be f HT L D t , so

FHT + D tL - FHT L = f HT L D t .
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Dividing by D t ,

FHT + D tL - FHT L
D t

= f HT L

we  obtain  the  fundamental  theorem  connecting  F  and  f ,  when

we take the limit where D t ® 0:

d F

d T
= lim

D t®0

FHT + D tL - FHT L
D t

= f HT L.

We can simplify the notation by ignoring the difference between t
and T ,

d F

d t
= f HtL.

In  other  words,  the  processes  of  integration  and  differentiation
are  reciprocal:  The  derivative  of  the  integral  is  the  original
integrand.

Can  we  completely  determine  FHtL  knowing  that  its
derivative  is  f HtL?  Almost,  but  not  quite.  The  problem  is  that

adding  a  constant  to  FHtL  does  not  change  its  derivative.  Given

f HtL,  its  indefinite  integral  is  ambiguous,  but  only up to adding a

constant.
To  see  how the  fundamental  theorem is  used,  let’s  work

out  some  indefinite  integrals.  Let’s  find  the  integral  of  a  power
f HtL = tn. Consider,

FHtL = à f HtL d t .

It follows that
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f HtL =
d FHtL

d t

or

tn =
d FHtL

d t
.

All we need to do is find a function F  whose derivative is tn, and
that is easy.

In the last chapter we found that for any m,

d HtmL
d t

= m tm-1.

If we substitute m = n + 1, this becomes

d Itn+1M
d t

= Hn + 1L tn

or, dividing by n + 1,

d Itn+1 � n + 1M
d t

= tn.

Thus  we  find  that  tn  is  the  derivative  of  tn+1

n+1
.  Substituting  the

relevant values, we get

FHtL = à tn d t =
tn+1

n + 1
.

The  only  thing  missing  is  the  ambiguous  constant  that  we  can
add to F . We should write
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à tn d t =
tn+1

n + 1
+ c

where c is a constant that has to be determined by other means.
The  ambiguous  constant  is  closely  related  to  the

ambiguity  in  choosing  the  other  endpoint  of  integration  that  we
earlier called a. To see how a  determines the ambiguous constant
c , let’s consider the integral

à
a

T
f HtL d t .

in  the  limit  where  the  two limits  of  integration  come together—
that  is,  T = a.  In  this  case,  the  integral  has  to  be  zero.  You  can
use that fact to determine c .

In general, the fundamental theorem of calculus is written

(2)à
a

b
f HtL d t = FHtL

a

b
= FHbL - FHaL.

Another  way to express  the fundamental  theorem is  by a
single equation:

(3)à
d f

d t
d t = f HtL + c .

In  other  words,  integrating  a  derivative  gives  back  the  original
function  (up  to  the  usual  ambiguous  constant).  Integration  and
differentiation undo each other.

Here are some integration formulas:

à c d t = c t
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à c f HtL d t = c à f HtL d t

à t d t =
t2

2
+ c

à t 2 d t =
t3

3
+ c

à t n d t =
tn+1

n + 1
+ c

à sin t d t = - cos t + c

à cos t d t = sin t + c

à et d t = et

à
d t

t
= ln t + c

à @ f HtL ± g HtLD d t = à f HtL d t ± à g HtL d t .

Exercise  1:  Determine  the  indefinite  integral  of  each  of
the  following  expressions  by  reversing  the  process  of
differentiation and adding a constant.

f HtL = t4

f HtL = cos t
f HtL = t2 - 2

Exercise  2:  Use  the  fundamental  theorem  of  calculus  to
evaluate  each  integral  from  Exercise  1  with  limits  of
integration being t = 0 to t = T .
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Exercise  2:  Use  the  fundamental  theorem  of  calculus  to
evaluate  each  integral  from  Exercise  1  with  limits  of
integration being t = 0 to t = T .

Exercise  3:  Treat  the  expressions  from  Exercise  1  as
expressions  for  the  acceleration  of  a  particle.  Integrate
them  once,  with  respect  to  time,  and  determine  the
velocities,  and  a  second  time  to  determine  the
trajectories.  Because we will use t  as one of the limits of
integration  we  will  adopt  the  dummy  integration
variable t '. Integrate them from  t ' = 0 to t ' = t.

vHtL = Ù0
t t '4 d t '

vHtL = Ù0
tcos t ' d t '

vHtL = Ù0
t It '2 - 2M d t '

Integration by Parts

There  are  some  tricks  to  doing  integrals.  One  trick  is  to  look
them  up  in  a  table  of  integrals.  Another  is  to  learn  to  use
Mathematica.  But  if  you’re  on  your  own  and  you  don’t  recognize
the  integral,  the  oldest  trick  in  the  book  is  integration  by  parts.  It’s
just  the  reverse  of  using  the  product  rule  for  differentiation.
Recall from Lecture 2 that to differentiate a function, which itself
is a product of two functions, you use the following rule:

d@ f HxL gHxLD
d x

= f HxL d gHxL
d x

+ gHxL d f HxL
d x

.

Now  let’s  integrate  both  sides  of  this  equation  between  limits  a
and b.
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Now  let’s  integrate  both  sides  of  this  equation  between  limits  a
and b.

à
a

b d@ f HxL gHxLD
d x

= à
a

b
f HxL d gHxL

d x
+

à
a

b
gHxL d f HxL

d x

The left  side  of  the  equation  is  easy.  The  integral  of  a  derivative
(the derivative of f g) is just the function itself. The left side is

f HbL g HbL - f HaL gHaL
which we often write in the form

f HxL g HxL¤ab .

Now let’s  subtract  one of the two integrals  on the right  side and
shift it to the left side.

(4)f HxL g HxL¤ab - à
a

b
f HxL d gHxL

d x
= à

a

b
gHxL d f HxL

d x
.

Suppose  we  have  some  integral  that  we  don’t  recognize,  but  we
notice  that  the  integrand  happens  to  be  a  product  of  a  function
f HxL and the derivative of another function gHxL. In other words,

after some inspection, we see that the integral has the form of the
right side of Eq. (4), but we don’t know how to do it. Sometimes
we  are  lucky  and  recognize  the  integral  on  the  left  side  of  the
equation.

Let’s do an example. Suppose the integral that we want to
do is

à
0

Π

2 x cos x d x.
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That’s not in our list of integrals. But notice that

cos x =
d sin x

d x

so the integral is

à
0

Π

2 x
d sin x

d x
d x.

Equation (4) tells us that this integral is equal to

x sin x¤0
Π

2 - à
0

Π

2
d x

d x
sin x d x

or just

Π

2
sin

Π

2
- à

0

Π

2 sin x d x.

Now it’s easy. The integral Ù sin x d x  is on our list: it’s just cos x.

I’ll leave the rest to you.

Exercise 4: Finish evaluating Ù0

Π

2 x cos x d x.

You  might  wonder  how  often  this  trick  works.  The  answer  is
quite often, but certainly not always. Good luck.
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Lecture 3: Dynamics
Lenny: “What makes things move, George? 

George: “Forces do, Lenny.”
Lenny: “What makes things stop moving, George?”
George: “Forces do, Lenny.”

Aristotle’s Law of Motion

Aristotle  lived  in  a  world  dominated  by  friction.  To  make
anything move—a heavy cart with wooden wheels, for example—
you had to push it,  you had to apply a force  to it.  The harder you
pushed  it,  the  faster  it  moved;  but  if  you  stopped  pushing,  the
cart  very  quickly  came  to  rest.  Aristotle  came  to  some  wrong
conclusions  because he didn’t  understand  that  friction  is  a  force.
But  still,  it’s  worth exploring his  ideas in modern language. If  he
had known calculus, Aristotle might have proposed the following
law of motion:

The velocity of any object is proportional to the total applied force. 

Had he known how to write vector equations, his law would have
looked like this:

F
®

= m v
®

.

F
®

 is  of  course  the  applied  force,  and the  response  (according  to

Aristotle)  would  be  the  velocity  vector,  v
®

.  The  factor  m  relating
the  two  is  some  characteristic  quantity  describing  the  resistance
of the body to being moved; for a given force, the bigger the m of
the object, the smaller its velocity. With a little reflection, the old
philosopher  might have identified m  with the mass of the object.
It  would  have  been  obvious  that  heavier  things  are  harder  to
move than lighter things, so somehow the mass of the object has
to be in the equation.

One suspects  that  Aristotle  never  went ice skating,  or  he
would have known that it is just as hard to stop a body as to get it
moving.  Aristotle’s  law is  just  plain  wrong,  but  it  is  nevertheless
worth  studying  as  an  example  of  how  equations  of  motion  can
determine  the  future  of  a  system.  From  now  on,  let’s  call  the
body a particle.

Consider  one-dimensional  motion  of  a  particle  along  the
x  axis  under  the  influence  of  a  given  force.  What  I  mean  by  a
given force is simply that we know what the force is at any time.
We  can  call  it  FHtL  (note  that  vector  notation  would  be  a  bit
redundant  in  one  dimension).  Using  the  fact  that  the  velocity  is
the  time  derivative  of  position,  x,  we  find  that  Aristotle’s
equation takes the form
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dxHtL
dt

=
FHtL
m

.

Before  solving  the  equation,  let’s  see  how  it  compares  to  the
deterministic  laws  of  Chapter  1.  One  obvious  difference  is  that
Aristotle’s equation is not stroboscopic—that is neither t  nor x  is
discrete.  They  do  not  change  in  sudden  stroboscopic  steps;  they
change continuously. Nevertheless, we can see the similarity if we
assume  that  time  is  broken  up  into  intervals  of  size  Dt  and

replace the derivative by Dx
Dt

. Doing so gives
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xHt + DtL = xHtL + Dt
FHtL
m

.

In other  words,  wherever the particle happens to be at time t ,  at
the  next  instant  its  position  will  have  shifted  by  a  definite
amount.  For  example,  if  the  force  is  constant  and  positive,  then
in  each  incremental  step  the  particle  moves  forward  by  an

amount Dt FHtL
m

. This law is obviously deterministic. Knowing that

the  particle  was  at  a  point  xH0L  at  time  t = 0  (or  x0),  one  can
easily  predict  where  it  will  be  in  the  future.  So  by  the  criteria  of
Chapter 1, Aristotle did not commit any crime.

Let’s go back to the exact equation of motion:

dxHtL
dt

=
FHtL
m

.

Equations  for  unknown  functions  that  involve  derivatives  are
called  differential  equations.  This  one  is  a  first-order  differential
equation because it  contains  only  first  derivatives.  Equations  like
this  are  easy  to  solve.  The  trick  is  to  integrate  both  sides  of  the
equation:

à
dxHtL

dt
d t = à

FHtL
m

dt .

The left side of the equation is the integral of a derivative. That’s
where the fundamental theorem of calculus comes in handy. The
left side is just xHtL + c .

The right side, on the other hand, is the integral of some
specified function and, apart from a constant,  is also determined.
For example, if F  is constant, then the right side is
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à
F

m
dt =

F

m
t + c .

Note  that  we  included  an  additive  constant.  Putting  an  arbitrary
constant on both sides of the equation is redundant. In this case,
the equation of motion is satisfied by

xHtL =
F

m
t + c .

How  do  you  fix  the  constant  c?  The  answer  is  by  the  initial
condition.  For  example,  if  we  knew  that  the  particle  started  at
x = 1, at time t = 3 we would plug these values in, obtaining

1 =
F

m
3 + c ,

and solve for c :

c = 1 - 3
F

m
.

Exercise 1: Given a force that varies with time according

to  F = 2t2,  and  with  the  initial  condition  at  time  zero,
xH0L = Π, use Aristotle’s law to find xHtL at all times.

Aristotle’s equations of motion are  deterministic,  but are
they reversible? In Lecture 1, I explained that reversible means that
if  all  the  arrows  were  reversed,  the  resulting  new  law  of  motion
would  also  be   deterministic.  The  analogous  procedure  to
reversing  the  arrows  when  time  is  continuous  is  very  simple.
Everywhere  you  see  time  in  the  equations,  replace  it  with  minus
time. That will have the effect of interchanging the future and the
past.  Changing  t  to  - t  also  includes  changing  the  sign  of  small
differences  in  time.  In  other  words,  every  Dt  must  be  replaced
with  - Dt .  In  fact,  you  can  do  it  right  at  the  level  of  the

differentials dt . Reversing the arrows means changing the differential
dt  to -dt . Let’s go back to Aristotle’s equation
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differentials dt . Reversing the arrows means changing the differential
dt  to -dt . Let’s go back to Aristotle’s equation

FHtL = m
dx

dt

and change the sign of time. The result is

FH- tL = -m
dx

dt
.

The  left-hand  side  of  the  equation  is  the  force,  but  the  force
evaluated at  time - t ,  not  at  time t .  However,  if  FHtL  is  a  known
function,  then so  is  FH- tL.  In  the reversed  problem,  the force  is
also a known function of reversed time.

On the right-hand side of the equation we’ve replaced dt
with  -dt ,  thereby  changing  the  sign  of  the  whole  expression.  In
fact,  one  can  shift  the  minus  sign  to  the  left-hand  side  of  the
equation:

-FH- tL = m
dx

dt
.

The  implication  is  simple:  The  reversed  equation  of  motion  is
exactly like the original, but with a different rule for the force as a
function of time.  The conclusion is clear: If Aristotle’s equations
of  motion  are  deterministic  into  the  future,  they  are  also
deterministic  into  the  past.  The  problem  with  Aristotle’s
equations is not that they are inconsistent; they are just the wrong
equations.

It  is  interesting  that  Aristotle's  equations  do  have  an
application—not  as  fundamental  laws,  but  as  approximations.
Frictional  forces  do  exist,  and  in  many  cases  they  are  so
important  that  Aristotle's  intuition—things  stop  if  you  stop
pushing—is  almost  correct.  Frictional  forces  are  not
fundamental. They are a consequence of a body interacting with a
huge  number  of  other  tiny  bodies—atoms  and  molecules—that
are too small  and too numerous  to  keep track of.  So we average
over  all  the  hidden  degrees  of  freedom.  The  result  is  frictional
forces.  When frictional  forces  are  very  strong  such  as  in  a  stone
moving  through  mud—then  Aristotle's  equation  is  a  very  good
approximation,  but  with  a  qualification.  It's  not  the  mass  that
determines  the  proportionality  between  force  and  velocity.  It's
the so-called viscous drag coefficient. But that may be more than
you want to know.
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Mass, Acceleration, and Force

Aristotle’s  mistake  was  to  think  that  a  net  “applied”  force  is
needed  to  keep  an  object  moving.  The  right  idea  is  that  one
force—the  applied  force—is  needed  to  overcome  another
force—the  force  of  friction.  An  isolated  object  moving  in  free
space,  with  no  forces  acting  on  it,  requires  nothing  to  keep  it
moving. In fact, it needs a force to stop it. This is the law of inertia.
What  forces  do  is  change  the  state  of  motion  of  a  body.  If  the
body  is  initially  at  rest,  it  takes  a  force  to  start  it  moving.  If  it’s
moving,  it  takes  a  force  to  stop  it.  If  it  is  moving  in  a  particular
direction,  it  takes  a  force  to  change  the  direction  of  motion.  All
of  these  examples  involve  a  change  in  the  velocity  of  an  object,
and therefore an acceleration.

From  experience  we  know  that  some  objects  have  more
inertia  than  others;  it  requires  a  larger  force  to  change  their
velocities.  Obvious  examples  of  objects  possessing  large  and
small  inertia  are  locomotives  and  Ping-Pong  balls,  respectively.
The quantitative measure of an object's inertia is its mass.

Newton's  law  of  motion  involves  three  quantities:
acceleration,  mass,  and force.  Acceleration we studied  in  Lecture
2.  By  monitoring  the  position  of  an  object  as  it  moves,  a  clever
observer—with  a  bit  of  mathematics—can  determine  its
acceleration.  Mass  is  a  new  concept  that  is  actually  defined  in
terms  of  force  and  acceleration.  But  so  far  we  haven't  defined
force.  It  sounds  like  we  are  in  a  logical  circle  in  which  force  is
defined by the ability to change the motion of a given mass,  and
mass  is  defined  by  the  resistance  to  that  change.  To  break  that
circle,  let's  take  a  closer  look  at  how  force  is  defined  and
measured in practice.

There  are  very  sophisticated  devices  that  can  measure
force  to  great  accuracy,  but  it  will  suit  our  purposes  best  to
imagine  a  very  old-fashioned  device,  namely,  a  spring  balance.  It
consists  of a spring and a ruler to measure how much the spring
is stretched from its natural equilibrium length (see Figure 1).
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A
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Pull

Figure 1: A spring balance.

The  spring  has  two  hooks,  one  to  attach  to  the  massive  body
whose mass is being measured, and one to pull on. In fact, while
you are at it, make several such identical devices.

Let’s define a unit of force by pulling on one hook, while
holding the other hook fixed to some object A, until  the pointer
registers  one  “tick”  on  the  ruler.  Thus  we are  applying  a  unit  of
force to A.

To  define  two  units  of  force,  we  could  pull  just  hard
enough  to  stretch  the  spring  to  two  ticks.  But  this  assumes  that
the spring behaves the same way between one tick and two ticks
of  stretching.  This  will  lead  us  back  to  a  vicious  circle  of
reasoning  that  we don’t  want  to  get  into.  Instead,  we define  two
units  of  force  by attaching two spring  balances to  A  and pulling
both of them with a single unit of force (see Figure 2).

In  other  words,  we pull  both  hooks  so  that  each pointer
records  a  single  tick.  Three  units  of  force  would  be  defined  by
using three springs, and so on.

When  we  do  this  experiment  in  free  space,  we  discover
the interesting fact that object A accelerates along the direction in
which  we  pull  the  hook.  More  exactly,  the  acceleration  is
proportional  to  the  force—twice  as  big  for  two  units  of  force,
three times as big for three units, and so on.
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Figure 2: Twice the force.

Let  us  do  something  to  change  the  inertia  of  A.  In
particular,  we  will  double  the  inertia  by  hooking  together  two
identical versions of object A (see Figure 3).
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Figure 3: Twice the mass.

What  we  find  is  that  when  we  apply  a  single  unit  of  force  (by
pulling the whole thing with a single spring stretched to one tick)
the  acceleration  is  only  half  what  it  was  originally.  The  inertia
(mass) is now twice as big as before.

The  experiment  can  obviously  be  generalized;  hook  up
three masses, and the acceleration is only a third as big, and so on.

We  can  do  many  more  experiments  in  which  we  hook
any  number  of  springs  to  any  number  of  A’s.  The  observations
are  summarized  by  a  single  formula,  Newton’s  second  law  of
motion, which tells us that force equals mass times acceleration,

(1)F
®

= m a
®

.

This equation can also be written in the form

(2)F
®

= m
d v

®

dt
.

In other words, force equals mass times the rate of change of
velocity: no force—no change in velocity.

Note  that  these  equations  are  vector  equations.  Both
force  and  acceleration  are  vectors  because  they  not  only  have
magnitude but also direction.
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An Interlude on Units

A mathematician might be content to say that the length of a line
segment  is  3.  But  a  physicist  or  engineer—or  even  an  ordinary
person—would want to know, “Three what?” Three inches, three
centimeters, or three light years?

Similarly,  it  conveys  no  information  to  say  that  the  mass
of  an  object  is  7  or  12.  To  give  the  numbers  meaning,  we  must
indicate what units we are using. Let’s begin with length.

Somewhere  in  Paris  rests  the  defining  platinum  meter
stick.  It  is  kept  in  a  sealed  container  at  a  fixed  temperature  and
away  from  other  conditions  that  might  affect  its  length.1  From

here on, we will adopt that meter stick as our unit of length.

Thus we write

@xD = @lengthD = meters.

Despite its appearance, this is not an equation in the usual sense.
The way to read it is x has units of length and is measured in meters.

Similarly,  t  has units  of time and is  measured in seconds.
The definition of a second could be given by the amount of time
it takes a certain pendulum to make a single swing:

@tD = @timeD = seconds.

The  units  meters  and  seconds  are  abbreviated  as  m  and  s,
respectively.

1. There  is  a  more  modern  definition  of  the  meter  in  terms  of  the
wavelength of  light  emitted  by  atoms jumping from one quantum level
to another. For our purposes the Paris meter stick will do just fine.
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Once we have units for length and time, we can construct
units for velocity and acceleration. To compute the velocity of an
object,  we  divide  a  distance  by  a  time.  The  result  has  units  of
length per time, or—in our units—meters per second.

@vD =
length

time
=

m

s
.

Similarly,  acceleration  is  the  rate  of  change  of  velocity,  and  its
units  are  velocity  per  unit  time,  or  length  per  unit  time  per  unit
time:

@aD =
length

time

1

time
=

length

time2
=

m

s2
.

The  unit  of  mass  that  we  will  use  is  the  kilogram;  it  is
defined  as  the  mass  of  a  certain  lump  of  platinum,  that  is  also
kept somewhere in France. Thus

@mD = @massD = kilogram = kg.

Now let’s consider the unit of force. One might define it
in  terms  of  some  particular  spring  made  of  a  specific  metal,
stretched a distance of 0.01 meter,  or something like that.  But in
fact,  we  have  no  need  for  a  new  unit  of  force.  We  already  have
one—namely the force that it takes to accelerate one kilogram by
one meter per second per second. Even better is to use Newton’s
law F = ma. Evidently, force has units of mass times acceleration,

@FD = @forceD
= @maD
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=
mass � length

time2

=
kg m

s2
.

There  is  a  name  for  this  unit  of  force.  One  kilogram  meter  per
second  squared  is  called  a  Newton,  abbreviated  N.  Newton,
himself,  being English,  probably  favored the British  unit,  namely
the pound. There are about 4.4 N to a pound.

Some Simple Examples of Solving Newton’s Equations

The simplest of all examples is a particle with no forces acting on
it.  The  equation  of  motion  is  Eq.  (2),  but  with  the  force  set  to
zero:

m
d v

®

dt
= 0,

or, using the dot notation for time derivative,

m v
®
 

= 0.

We  can  drop  the  factor  of  mass  and  write  the  equation  in
component form as

v
×
x = 0

v
×

y = 0

v
×
z = 0
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The solution  is  simple:  The components  of  velocity  are constant
and can just be set equal to their initial values,

(3)vxHtL = vxH0L.
The  same  goes  for  the  other  two  components  of  velocity.  This,
incidently, is often referred to as Newton’s first law of motion:

Every object in a state of uniform motion tends to remain in that state of
motion unless an external force is applied to it.

Equations (1) and (2) are called Newton’s second law of motion,

The  relationship  between  an  object’s  mass  m,  its  acceleration  a,  and  the
applied force F is

F = ma.

But,  as  we have seen,  the first  law is  simply  a special  case of  the
second law when the force is zero.

Recalling  that  velocity  is  the  derivative  of  position,  we
can express Eq. (3) in the form

x
×

= vxH0L.
This is the simplest possible differential equation, whose solution
(for all components) is

xHtL = x0 + vxH0Lt
yHtL = y0 + v yH0Lt
zHtL = z0 + vzH0Lt

or, in vector notation,

r
®HtL = r

®

0 + v
®

0t .

A  more  complicated  motion  results  from  the  application
of a constant force. Let’s first carry it out for just the z  direction.

Dividing by m, the equation of motion is

70 The Theoretical Minimum



A more  complicated  motion  results  from  the  application
of a constant force. Let’s first carry it out for just the z  direction.

Dividing by m, the equation of motion is

v
×
z =

Fz

m
.

Exercise  2:  Integrate  this  equation.  Hint:  Use  definite

integrals.

From this result we deduce

vzHtL = vzH0L +
Fz

m
t ,

or

z
× HtL = vzH0L +

Fz

m
t .

This  is  probably  the  second  simplest  differential  equation.  It  is
easy to solve:

(4)zHtL = z0 + vzH0Lt +
Fz

2m
t2.

Exercise 3: Show by differentiation  that this satisfies the
equation of motion.

This simple case may be familiar. If z  represents the height above

the surface of the Earth, and 
Fz

m
 is replaced with the acceleration

due  to  gravity,  
Fz

m
= - g,  then  Eq.  (4)  is  the  equation  describing

the  motion  of  an  object  falling  from  height  z0  with  an  initial

velocity vzH0L:
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This simple case may be familiar. If z  represents the height above

the surface of the Earth, and 
Fz

m
 is replaced with the acceleration

due  to  gravity,  
Fz

m
= - g,  then  Eq.  (4)  is  the  equation  describing

the  motion  of  an  object  falling  from  height  z0  with  an  initial

velocity vzH0L:

(5)zHtL = z0 + vzH0Lt -
1

2
gt2.

Let’s  consider  the case of the simple harmonic oscillator.
This  system is best thought of as a particle that moves along the
x  axis, subject to a force that pulls it toward the origin. The force
law is

Fx = -kx.

The  negative  sign  indicates  that  at  whatever  the  value  of  x,  the
force  pulls  it  back  toward  x = 0.  Thus,  when  x  is  positive,  the
force  is  negative,  and vice versa.  The equation of  motion  can be
written in the form

x
××

= -
k

m
x,

or, by defining k
m

= Ω2,

(6)x
××

= - Ω2x.

Exercise 4: Show by differentiation that the general 
solution to Eq. (6) is given in terms of two constants A 
and B by

      xHtL = A cos Ω t+B sin Ω t.
Determine the initial position and velocity at time t = 0 
in terms of A and B.

The  harmonic  oscillator  is  an  enormously  important
system  that  occurs  in  contexts  ranging  from  the  motion  of  a
pendulum to the oscillations of the electric and magnetic fields in
a light wave. It is profitable to study it thoroughly.
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Interlude 3: Partial Differentiation
“Look out there, Lenny. Ain’t those hills and valleys pretty?”

“Yeah  George.  Can  we  get  a  place  over  there  when  we
get some money? Can we?”

George squinted. “Exactly where are you looking Lenny?”
Lenny  pointed.  “Right  over  there  George.  That  local

minimum.”

Partial Derivatives

The  calculus  of  multivariable  functions  is  a  straightforward
generalization of single-variable calculus. Instead of a function of
a  single  variable  t ,  consider  a  function  of  several  variables.  To
illustrate, let’s call the variables x, y, z, although these don’t have

to  stand  for  the  coordinates  of  ordinary  space.  Moreover,  there
can be more or fewer then three. Let us also consider a function
of these variables,  V Hx, y, zL.  For every value of x, y, z,  there is

a  unique  value  of  V Hx, y, zL  that  we  assume  varies  smoothly  as

we vary the coordinates.
Multivariable  differential  calculus  revolves  around  the

concept  of  partial  derivatives.  Suppose  we  are  examining  the
neighborhood of a point x, y, z, and we want to know the rate at

which V  varies as we change x  while keeping y  and z  fixed. We

can  just  imagine  that  y  and  z  are  fixed  parameters,  so  the  only

variable is x. The derivative of V  is then defined by

(1)
d V

d x
= lim

D x®0

D V

D x



where D V  is defined by

(2)D V = V H@x + D xD, y, zL - V Hx, y, zL.
Note  that  in  the  defininition  of  D V ,  only  x  has  been shifted;  y

and z are kept fixed.

The derivative defined by Eq. (1) and Eq. (2) is called the
partial derivative of V  with respect to x and is denoted

¶V

¶x

or, when we want to emphasize that y and z are kept fixed,

¶V

¶x y,z
.

By  the  same  method  we  can  construct  the  partial
derivative with respect to either of the other variables:

¶V

¶ y
= lim

D y®0

D V

D y
.

A  shorthand  notation  for  the  partial  derivatives  of  V  with
respect to y is

¶V

¶ y
= ¶ y V .

Multiple  derivatives  are  also  possible.  If  we  think  of  ¶V
¶x

as itself  being a function of  x, y, z,  then it  can be differentiated.

Thus  we  can  define  the  second-order  partial  derivative  with
respect to x:
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¶2 V

¶x2
= ¶x

¶V

¶x
= ¶x,x V .

Mixed  partial  derivatives  also  make  sense.  For  example,  one  can
differentiate ¶ y V  with respect to x:

¶2 V

¶x ¶ y
= ¶x

¶V

¶ y
= ¶x, y V .

It’s  an  interesting  and  important  fact  that  the  mixed  derivatives
do  not  depend  on  the  order  in  which  the  derivatives  are  carried
out. In other words,

¶2 V

¶x ¶ y
=

¶2 V

¶ y ¶x
.

Exercise  1:  Compute  all  first  and  second  partial
derivatives—including  mixed  derivatives—of  the
following functions.

x2 + y2 = sin Hx yL
x
y

ex
2+ y2

ex cos y

Stationary Points and Minimizing Functions

Let’s look at a function of y that we will call F  (see Figure 1).
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y

FH yL

Figure 1: Plot of the function FI yM.

Notice  that  there  are  places  on  the  curve  where  a  shift  in  y  in

either direction produces only an upward shift in F . These points
are called local minima. In Figure 2 we have added dots to indicate
the local minima.

y

FH yL

Figure 2: Local minima.

For each local minimum, when you go in either direction along y,

you  begin  to  rise  above  the  dot  in  FH yL.  Each  dot  is  at  the

bottom  of  a  little  depression.  The  global  minimum  is  the  lowest
possible place on the curve.

One condition for  a local  minimum is  that  the derivative
of  the  function  with  respect  to  the  independent  variable  at  that
point  is  zero.  This  is  a  necessary  condition,  but  not  a  sufficient
condition. This condition defines any stationary point,

d

d y
FH yL = 0.

The  second  condition  tests  to  see  what  the  character  of  the
stationary  point  is  by  examining  its  second  derivative.  If  the
second  derivative  is  larger  than  0,  then  all  points  nearby  will  be
above the stationary point, and we have a local minimum:
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The  second  condition  tests  to  see  what  the  character  of  the
stationary  point  is  by  examining  its  second  derivative.  If  the
second  derivative  is  larger  than  0,  then  all  points  nearby  will  be
above the stationary point, and we have a local minimum:

d2

d2 y
FH yL > 0.

If  the second derivative is  less  than 0,  then all  points  nearby will
be below the stationary point, and we have a local maximum:

d2

d2 y
FH yL < 0.

See Figure 3 for examples of local maxima.

y

FH yL

Figure 3: Local maxima.

If the second derivative is equal to 0, then the derivative changes
from positive  to negative at  the stationary  point,  which we call  a
point of inflection:

d2

d2 y
FH yL = 0.

See Figure 4 for an example of a point of inflection. 
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y

FH yL

Figure 4: Point of inflection.

These are collectively the results of a second-derivative test.

Stationary Points in Higher Dimensions

Local  maxima,  local  minima,  and  other  stationary  points  can
happen  for  functions  of  more  than  one  variable.  Imagine  a  hilly
terrain.  The  altitude  is  a  function  that  depends  on  the  two
coordinates—let’s say latitude and longitude. Call it AHx, yL. The

tops  of  hills  and  the  bottoms  of  valleys  are  local  maxima  and
minima  of  AHx, yL.  But  they  are  not  the  only  places  where  the

terrain  is  locally  horizontal.  Saddle  points  occur  between  two
hills. You can see some examples in Figure 5.

Figure 5: A function of several variables.

The  very  tops  of  hills  are  places  where  no  matter  which
way  you  move,  you  soon  go  down.  Valley  bottoms  are  the
opposite;  all  directions  lead  up.  But  both  are  places  where  the
ground is level.

There are other places where the ground is level. Between
two hills  you can find places called saddles.  Saddle points  are level,

but  along  one  axis  the  altitude  quickly  increases  in  either
direction.  Along  another  perpendicular  direction  the  altitude
decreases. All of these are called stationary points.
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The  very  tops  of  hills  are  places  where  no  matter  which
way  you  move,  you  soon  go  down.  Valley  bottoms  are  the
opposite;  all  directions  lead  up.  But  both  are  places  where  the
ground is level.

There are other places where the ground is level. Between
two hills  you can find places called saddles.  Saddle points  are level,

but  along  one  axis  the  altitude  quickly  increases  in  either
direction.  Along  another  perpendicular  direction  the  altitude
decreases. All of these are called stationary points.

Let's  take  a  slice  along  the  x  axis  through  our  space  so
that the slice passes through a local minimum of A, see Figure 6.

Figure 6: A slice along the x axis.

It’s  apparent  that  at  the  minimum,  the  derivative  of  A
with respect to x vanishes, we write this:

¶ A

¶ x
= 0.

On the  other  hand,  the  slice  could  have been oriented  along the
y axis, and we would then conclude that

¶ A

¶ y
= 0.

To  have  a  minimum,  or  for  that  matter  to  have  any  stationary
point, both derivatives must vanish. If there were more directions
of  space  in  which  A  could  vary,  then  the  condition  for  a
stationary point is given by:
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(3)
¶ A

¶ xi
= 0.

for all xi .

There  is  a  shorthand  for  summarizing  these  equations.
Recall  that the change in a function when the point  x  is  varied a
little bit is given by

∆ A = â
i

¶ A

¶ xi
∆ xi .

The set of Equations (3) are equivalent to the condition that

(4)∆ A = 0

for any small variation of x.
Suppose we found such a point. How do we tell whether

it  is  a  maximum,  a  minimum,  or  a  saddle.  The  answer  is  a
generalization of the criterion for a single variable. We look at the
second  derivatives.  But  there  are  several  second  derivatives.  For
the case of two dimensions, we have

¶2 A

¶ x2
,

¶2 A

¶ y2
,

¶2 A

¶ x ¶ y
,

and
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¶2 A

¶ y ¶ x
,

the last two being the same.
These  partial  derivatives  are often arranged into a special

matrix called the Hessian matrix.

H =

¶2A

¶ x2
¶2A

¶ x ¶ y

¶2A
¶ y ¶ x

¶2A

¶ y2 .

Important quantities, called the determinant and the trace, can be
made out of such a matrix. The determinant is given by

Det H =
¶2 A

¶ x2

¶2 A

¶ y2
-

¶2 A

¶ y ¶ x

¶2 A

¶ x ¶ y

and the trace is given by

Tr H =
¶2 A

¶ x2
+

¶2 A

¶ y2
.

Matrices,  determinants,  and  traces  may  not  mean  much
to you beyond these definitions,  but they will  if  you follow these
lectures  to  the  next  subject—quantum  mechanics.  For  now,  all
you need is the definitions and the following rules.

If the determinant and the trace of the Hessian is positive then the point is a
local minimum.

If  the  determinant  is  positive  and  the  trace  negative  the  point  is  a  local
maximum.

If  the  determinant  is  negative,  then  irrespective  of  the  trace,  the  point  is  a
saddle point.

However:  One  caveat,  these  rules  specifically  apply  to  functions
of  two  variables.  Beyond  that,  the  rules  are  more  complicated.
None  of  this  is  obvious  for  now,  but  it  still  enables  you  to  test
various  functions  and  find  their  different  stationary  points.  Let’s
take an example. Consider
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However:  One  caveat,  these  rules  specifically  apply  to  functions
of  two  variables.  Beyond  that,  the  rules  are  more  complicated.
None  of  this  is  obvious  for  now,  but  it  still  enables  you  to  test
various  functions  and  find  their  different  stationary  points.  Let’s
take an example. Consider

FHx, yL = sin x + sin y.

Differentiating, we get

¶ F

¶ x
= cos x

¶ F

¶ y
= cos y.

Take  the  point  x =
Π

2
, y =

Π

2
.  Since  cos Π

2
= 0,  both  derivatives

are zero and the point is a stationary point.
Now,  to  find  the  type  of  stationary  point,  compute  the

second derivatives. The second derivatives are

¶2 F

¶ x2
= -sin x

¶2 F

¶ y2
= -sin y

¶2 F

¶ x ¶ y
= 0

¶2 F

¶ y ¶ x
= 0.

Since sin Π

2
= 1 we see that both the determinant and the trace of

the Hessian are positive. The point is therefore a minimum.
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Since sin Π

2
= 1 we see that both the determinant and the trace of

the Hessian are positive. The point is therefore a minimum.

Exercise  2:  Consider  the  points  Jx =
Π

2
, y = -

Π

2
N,

Jx = -
Π

2
, y =

Π

2
N ,

Jx = -
Π

2
, y = -

Π

2
N.  Are these points  stationary  points  of

the following functions? Is so, of what type?.

FHx, yL = sin x + sin y
FHx, yL = cos x + cos y
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Lecture 4: Systems of More Than One 
Particle

It’s a lazy, warm evening. Lenny and George are lying in the grass
looking up at the sky.

“Tell me about the stars George. Are they particles?”
“Kind of, Lenny.”
“How come they don't move?”
“They do, Lenny. It’s just that they’re very far away.”
“There’s an awful lot of them, George. Do you think that

guy Laplace could really figure them all out?”

Systems of Particles

If—as  Laplace  believed—natural  systems  are  composed  of
particles,  then  the  laws  of  nature  must  be  the  dynamical  laws  of
motion  that  determine  the  motion  of  those  systems  of  particles.
Again,  Laplace:  “An  intellect  which  at  a  certain  moment  would
know  all  forces  .  .  .  and  all  positions  .  .  .  .”  What  is  it  that
determines the force on a given particle? It is the positions  of all
the other particles.

There  are  many  types  of  forces—such  as  friction,  the
drag force exerted by the wind, and the force exerted by the floor
that  keeps  you  from  falling  to  the  basement—that  are  not
fundamental.  They  originate  from  the  microscopic  interactions
between atoms and molecules.

The  fundamental  forces  are  those  that  act  between
particles,  like  gravity  and  electric  forces.  These  depend  on  a
number  of  things:  Gravitational  forces  between  particles  are
proportional  to  the  product  of  their  masses,  and  electric  forces
are proportional  to the product  of  their  electric charges.  Charges
and masses are considered to be intrinsic properties  of a particle,
and specifying them is part of specifying the system itself.

Apart from the intrinsic properties,  the forces depend on
the  location  of  the  particles.  For  example,  the  distance  between
objects  determines  the  electric  and  gravitational  force  that  one
particle  exerts  on  another.  Suppose  that  the  locations  of  all  the
particles are described by their coordinates: x1, y1, z1  for the first

particle, x2, y2, z2  for the second particle, x3, y3, z3  for the third

particle,  and so  on up to  the  last,  or  the  N th,  particle.  Then  the
force  on  any  one  particle  is  a  function  of  its  location  as  well  as
the location of all the others. We can write this in the form
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that  keeps  you  from  falling  to  the  basement—that  are  not
fundamental.  They  originate  from  the  microscopic  interactions
between atoms and molecules.
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and specifying them is part of specifying the system itself.

Apart from the intrinsic properties,  the forces depend on
the  location  of  the  particles.  For  example,  the  distance  between
objects  determines  the  electric  and  gravitational  force  that  one
particle  exerts  on  another.  Suppose  that  the  locations  of  all  the
particles are described by their coordinates: x1, y1, z1  for the first

particle, x2, y2, z2  for the second particle, x3, y3, z3  for the third

particle,  and so  on up to  the  last,  or  the  N th,  particle.  Then  the
force  on  any  one  particle  is  a  function  of  its  location  as  well  as
the location of all the others. We can write this in the form

F
®

i = F
®

i J: r
®>N.

What this equation means is that the force on the ith particle is a

function  of  the  positions  of  all  the  particles.  The  symbol  : r
®>

stands  for  the  collective  location  of  every  particle  in  the  system.
Another  way  of  saying  this  is  that  the  symbol  represents  the  set
of all position vectors.

Once  we  know  the  force  on  any  particle—for  example,
particle  number  1—we  can  write  Newton’s  equation  of  motion
for that particle:

F
®

1 J: r
®>N = m1 a

®

1,

where  m1  and  a
®

1  are  the  mass  and  acceleration  of  particle  1.
When we express the acceleration as the second derivative of the
position, the equation becomes
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F
®

1 J: r
®>N = m1

d2 r
®

1

d t2
.

In fact, we can write such an equation for each particle:

F
®

1 J: r
®>N = m1

d2 r
®

1

d t2

F
®

2 J: r
®>N = m2

d2 r
®

2

d t2

F
®

3 J: r
®>N = m3

d2 r
®

3

d t2

»

F
®

N J: r
®>N = mN

d2 r
®

N

d t2

or, in condensed form,

F
®

i J: r
®>N = mi

d2 r
®

i

d t2
.

We can also write these equations in component form:

(1)

HFxLi H8x<L = mi
d2 xi

d t2

IF yMi H8 y<L = mi
d2 yi

d t2

IFz Mi H8z<L = mi
d2 zi

d t2
.

In this set of equations, HFxLi , IF yMi , and IFz Mi  mean the x, y, and

z  components  of  the  force  on  the  ith  particle,  and  the  symbols

8x<, 8 y<, and 8z< represent the sets of all the x  coordinates, all the

y coordinates, and all the z coordinates of all the particles.

This  last  set  of  equations  makes  it  clear  that  there  is  an
equation  for  each  coordinate  of  every  particle,  which  would  tell
Laplace’s  vast  intellect  how  every  particle  moves  if  the  initial
conditions  were  known.  How  many  equations  are  there  in  all?
The  answer  is  three  for  each  particle,  so  if  there  are  N  particles
the grand total is 3N  equations.
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This  last  set  of  equations  makes  it  clear  that  there  is  an
equation  for  each  coordinate  of  every  particle,  which  would  tell
Laplace’s  vast  intellect  how  every  particle  moves  if  the  initial
conditions  were  known.  How  many  equations  are  there  in  all?
The  answer  is  three  for  each  particle,  so  if  there  are  N  particles
the grand total is 3N  equations.

The Space of States of a System of Particles

The formal  meaning of the state of  a system is,  “Everything you
need  to  know (with  perfect  accuracy)  to  predict  its  future,  given
the  dynamical  law.”  Recall  from  Lecture  1,  that  the  space  of
states, or state-space, is the collection of all possible states of the
system. In the examples of Lecture 1, the state-space was typically
a  discrete  collection  of  possibilities:  H  or  T  for  the  coin,  1
through  6  for  the  die,  and  so  forth.  In  Aristotelian  mechanics,
assuming  that  the  forces  on  an  object  are  known,  the  state  is
specified  by  simply  knowing  the  location  of  the  object.  In  fact,
from  Aristotle’s  law,  the  force  determines  the  velocity,  and  the
velocity tells you where the particle will be at the next instant.

But Newton’s law is different from Aristotle’s: It tells you
the  acceleration,  not  the  velocity.  This  means  that  to  get  started,
you need to know not  only where the particles  are but  also their
velocities.  Knowing  the  velocity  tells  you  where  the  particle  will
be at the next instant, and knowing the acceleration tells you what
the velocity will be.

All  of  this  means  that  the  state  of  a  system  of  particles
consists  of more than just their current locations;  it also includes
their  current  velocities.  For  example,  if  the  system  is  a  single
particle,  its  state  consists  of  six  pieces  of  data:  the  three
components  of  its  position  and  the  three  components  of  its
velocity. We may express this by saying that the state is a point in
a six-dimensional space of states labeled by axes x, y, z, vx , v y , vz .

Now  let’s  consider  the  motion  of  the  particle.  At  each
instant  of  time,  the  state  is  specified  by  the  values  of  the  six
variables  xHtL, yHtL, zHtL, vxHtL, v yHtL, vzHtL.  The  history  of  the

particle  can  be  pictured  as  a  trajectory  through  the  six-
dimensional state-space.

Next,  consider  the  space  of  states  of  a  system  of  N
particles.  To  specify  the  state  of  the  system,  we  need  to  specify
the state of every particle. This obviously means that the space of
states  is  6N-dimensional:  three  position  components  and  three
velocity  components  for  each of  the  N  particles.  One  may  even
say  that  the  motion  of  the  system  is  a  trajectory  through  a  6N-
dimensional space.

But  wait.  If  the  state-space  is  6N-dimensional,  why  is  it
that  3N  components  in  Equations  (1)  are  enough  to  determine
how the system evolves? Are we missing half the equations? Let’s
go back to a system of a single particle with specified forces  and
write  Newton’s  equations,  using  the  fact  that  acceleration  is  the
rate of change of velocity:

88 The Theoretical Minimum



The formal  meaning of the state of  a system is,  “Everything you
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rate of change of velocity:

m
d v

®

d t
= F

®

.

Since there is no expression for the velocity here, let’s add to this
another  equation  expressing  the  fact  that  velocity  is  the  rate  of
change of position:
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d r
®

d t
= v

®
.

When  we  include  this  second  equation,  we  have  a  total  of  six
components  that  tell  us  how  the  six  coordinates  of  the  state-
space change with time. The same idea, applied to each individual
particle, gives us 6N  equations governing the motion through the
space of states:

(2)
mi

d vi

d t
= Fi

d ri

d t
= vi .

Thus, in answer to the question posed above, we were missing half
the equations.

Wherever you happen to be in the 6N-dimensional space
of states, Equations (2) tell you where you will be next. They also
tell  you  where  you  were  an  instant  ago.  Thus,  Equations  (2)  are
suitable  dynamical  laws.  We now have our  6N  equations  for  the
N  particles.

Momentum and Phase Space

If you are struck by a moving object, the result depends not only
on  the  velocity  of  the  object  but  also  on  its  mass.  Obviously,  a
Ping-Pong ball at 30 miles per hour (about 13 meters per second)
will  have  much  less  of  a  mechanical  effect  than  a  locomotive
moving  at  the  same  speed.  In  fact,  the  effect  is  proportional  to
the momentum  of the object, which for now we shall define as the
product  of  the  velocity  and  the  mass.  Since  the  velocity  is  a
vector, so is the momentum, denoted by the letter p. Thus
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the momentum  of the object, which for now we shall define as the
product  of  the  velocity  and  the  mass.  Since  the  velocity  is  a
vector, so is the momentum, denoted by the letter p. Thus

pi = mi vi

or

p
®

= m v
®

.

Since  velocity  and  momentum  are  so  closely  linked,  we
can use momentum and position instead of velocity and position
to  label  the  points  of  the  state-space.  When  the  state-space  is
described  this  way,  it  has  a  special  name—phase  space.  The  phase
space of  a  particle  is  a  six-dimensional  space with coordinates  xi
and pi  (see Figure 1).

x

p
Hx, pL

Figure 1: A point in phase space.

Why  didn’t  we  call  this  space  configuration  space?  Why
the  new  term  phase  space?  The  reason  is  that  the  term
configuration space is used for something else, namely, the three-
dimensional  space  of  positions:  Just  the  ri ’s.  It  might  have  been
called  position  space;  then  we  could  have  said,  “Position  space
plus  momentum  space  equals  phase  space.”  In  fact,  we  do  say
that,  but  we  also  use  the  term  configuration  space
interchangeably with position space. Therefore the slogan is

Configuration space plus momentum space equals phase space.

You  may  wonder  why  we  go  to  the  trouble  of  replacing
the  intuitive  concept  of  velocity  with  the  more  abstract  concept
of  momentum  in  describing  the  state  of  a  particle.  The  answer
should  become  clear  as  we  develop  the  basic  framework  of
classical mechanics in later chapters.  For now, let’s just reexpress
Equations  (2)  in  terms  of  momentum instead  of  velocity.  To  do
so, we first note that
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classical mechanics in later chapters.  For now, let’s just reexpress
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m
d v

®

d t

is  nothing  but  the  time  rate  of  change  of  momentum—that  is,

d p
®

d t
, or in the condensed dot notation,

m
d v

®

d t
= p

®
×

.

The full set of equations becomes

(3)
pi
×

= FiH8ri<L
ri
×

=
pi

m
.

This  simple,  elegant  set  of  equations  is  exactly  what  Laplace
imagined the laws of  nature  to  be:  For  each coordinate  of  phase
space we have a single equation to tell you how it changes over an
infinitesimal interval of time.

Action, Reaction, and the Conservation of Momentum

The  principle  of  the  conservation  of  momentum  is  a  profound
consequence  of  abstract  general  principles  of  classical  mechanics
that we have yet to formulate. But it can also be understood at an
elementary level from Newton’s third law of motion:
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For every action there is an equal and opposite reaction.

The simplest way to think of the third law is to suppose first that
particles  interact  in  pairs.  Each  particle  j  exerts  a  force  on  each

other  particle  i,  and the  total  force  on any particle  is  the  sum of
the forces on it exerted by all the other particles. If we denote the

force  on  particle  i  due  to  particle  j  by  the  symbol  f ij ,  then  the

total force acting on particle i is

(4)F i = â
j

f ij .

The left side represents the total force on particle i, and the right
side  is  the  sum  of  the  forces  acting  on  i  due  to  all  the  other
particles.

Newton’s  law  of  action  and  reaction  is  about  the  force

between  pairs  of  particles,  f ij .  What  it  says  is  simple:  The  force

due  to  one  particle  j  on  another  particle  i  is  equal  and  opposite  to

the force due to particle i  acting on particle j . As an equation, the

third law says that for every i and j ,

(5)f ij = - f ji .

Let’s rewrite the first of Equations (3), plugging in Eq. (4):

pi

 
= â

j

f ij .

In  other  words,  the  rate  of  change  of  the  momentum  of  any
particle  is  the  sum  of  the  forces  due  to  all  the  other  particles.
Now  let’s  add  up  all  these  equations  to  see  how  the  total
momentum changes.
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â
i

pi

 
= â

i
â

j

f ij

The left-hand side of this equation is the sum of the rates
of  change  of  all  the  momenta  (the  plural  of  momentum).  In  other
words, it is the rate of change of the total momentum. The right-
hand side of the equation is zero. That’s because when you write
it out, each pair of particles contributes two terms: the force on i
due  to  j ,  and  the  force  on  j  due  to  i.  The  law  of  action  and

reaction, Eq. (5),  ensures that these cancel. Thus we are left with
an equation that we can write in the form

d

d t
â

i

pi = 0.

This  equation  is  precisely  the  mathematical  expression  of  the
“conservation”  of  momentum:  The  total  momentum  of  an
isolated system never changes.

Let's  consider  the  6N-dimensional  space  of  p’s  and  x’s.

At every point  the entire collection of momenta are specified,  so
it  follows  that  every  point  in  the  phase  space  is  (partially)
characterized  by  a  value  of  the  total  momentum.  We  could  go
through  the  phase  space,  labeling  each  point  with  its  total
momentum. Now imagine starting the system of particles at some
point.  As  time  evolves,  the  phase  point  sweeps  out  a  path  in
phase  space.  Every  point  on  that  path  is  labeled  with  the  same
value of total momentum; the point never jumps from one value
to  another.  This  is  entirely  similar  to  the  idea  of  a  conservation
law that we explained in Lecture 1.
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Lecture 5: Energy
“Old timer, what are you looking for under the locomotive?” 

Lenny  loved  the  big  steam  locomotives,  so  now  and
then, on their days off,  George took him down to the train yard.
Today,  they  found  a  confused  old  man who looked  as  if  he  had
lost something.

“Where’s  the  horse  that  pulls  this  thing?”  the  old  timer
asked George.

“We’ll, it don’t need no horse. Here, I’ll show you how it
works.  You  see  this  place  over  here,”  he  said,  pointing.  “That’s
the  fire  box  where  they  burn  the  coal  to  get  out  the  chemical
energy.  Then  this,  right  next  to  it,  is  the  boiler  where  the  heat
boils  the  water  to  make  steam.  The  steam  pressure  does  work
against  the  piston  in  this  here  box.  Then,  the  piston  pushes
against these rods, and they make the wheels turn.” The old timer
grinned, shook George’s hand, and took his leave. 

Lenny  had  been  standing  aside  while  George  explained
the  locomotive.  Now,  with  a  look  of  sheer  admiration,  he  came
over to George and said, “George, I loved the way you explained
things  to  that  guy.  And  I  understood  all  of  it.  The  fire  box,  the
boiler, the piston.  Just one thing I didn’t get.”

“What’s that, Lenny?”
“Well, I was just wondering. Where’s the horse?”

Force and Potential Energy

One  often  learns  that  there  are  many  forms  of  energy  (kinetic,
potential,  heat,  chemical,  nuclear,  .  .  .  )  and that  the sum total  of
all  of  them  is  conserved.  But  when  reduced  to  the  motion  of
particles,  classical  physics  really  has  only  two  forms  of  energy:
kinetic and potential.  The best  way to derive the conservation of
energy  is  to  jump  right  into  the  formal  mathematical  principles
and then step back and see what we have.

The  basic  principle—call  it  the  potential  energy  principle—
asserts  that  all  forces  derive  from  a  potential  energy  function
denoted  V H8x<L.  Recall  that  8x<  represents  the  entire  set  of  3N
coordinates—the  configuration  space—of  all  particles  in  the
system.  To  illustrate  the  principle,  let’s  begin  with  the  simplest
case  of  a  single  particle  moving  along  the  x  axis  under  the
influence  of  a  force  FHxL.  According  to  the  potential  energy
principle,  the  force  on  the  particle  is  related  to  the  derivative  of
the potential energy, V HxL:
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(1)FHxL = -
d V HxL

d x
.

In  the  one-dimensional  case,  the  potential  energy  principle  is
really  just  a  definition  of  V HxL.  In  fact,  the  potential  energy  can
be reconstructed from the force by integrating Eq. (1):

(2)V HxL = -à FHxL d x.

We can think of Eq. (1) in the following way: The force is always
directed  in  a  way that  pushes  the  particle  toward  lower  potential
energy  (note  the  minus  sign).  Moreover,  the  steeper  V HxL,  the
stronger the force. The slogan that captures the idea is Force pushes
you down the hill.

Potential energy by itself is not conserved. As the particle
moves,  V HxL  varies.  What  is  conserved  is  the  sum  of  potential
energy  and  kinetic  energy.  Roughly  speaking,  as  the  particle  rolls
down the hill (in other words, as it moves toward lower potential
energy),  it  picks  up  speed.  As  it  rolls  up  the  hill,  it  loses  speed.
Something is conserved.

Kinetic  energy  is  defined  in  terms  of  the  velocity  v  and
mass m of the particle. It is denoted by T :
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mass m of the particle. It is denoted by T :

T =
1

2
m v2.

The  total  energy  E  of  the  particle  is  the  sum  of  the  kinetic  and
potential energies:

E =
1

2
m v2 + V HxL.

As  the  particle  rolls  along  the  x  axis,  the  two  types  of  energy
individually  vary,  but  always  in  such  a  way  that  the  sum  is
conserved. Let’s prove it by showing that the time derivative of E
is zero.

First  let’s  calculate  the  rate  of  change  of  the  kinetic
energy. The mass is assumed constant, but v2  can vary.  The time
derivative of v2 is

(3)
d v2

d t
= 2 v

d v

d t
= 2 v v

×
.

Exercise  1:  Prove  Eq.  (3).  Hint:  Use  the  product  rule  for

differentiation.

It follows that the time derivative of the kinetic energy is

T
×

= m v v
×

= m v a,

where the time derivative of the velocity has been replaced by the
acceleration.

Next, let’s calculate the rate of change of potential energy.
The  key  is  to  realize  that  V HxL  changes  with  time  because  x
changes. Here is the formula that expresses this:
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where the time derivative of the velocity has been replaced by the
acceleration.

Next, let’s calculate the rate of change of potential energy.
The  key  is  to  realize  that  V HxL  changes  with  time  because  x
changes. Here is the formula that expresses this:

d V

d t
=

d V

d x

d x

d t
.

(It's okay to think of derivatives as ratios and to cancel the factors
of d x  in the numerator and denominator.)  Another way to write

this equation is to replace d x
d t

 with the velocity v:

d V

d t
=

d V

d x
v.

(Be careful to not confuse V  and v.)
Now  we  can  calculate  the  rate  of  change  of  the  total

energy:

E
×

= T
×

+ V
×

= m v a +
d V

d x
v .

Note that since both terms contain a factor of v, we can factor it
out:

E
×

= v m a +
d V

d x
.

Now look  at  the  expression  in  parentheses.  Use  the  fact
that  the  derivative  of  V  is  related  to  the  force.  Recalling  the
minus sign in Eq. (1), we see that the rate of change of E is given
by
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E
×

= vHm a - FHxLL .

We  now  have  what  we  need  to  prove  energy  conservation:
Newton’s law, F = m a,  is  exactly the condition that the factor in
parentheses vanishes, which in turn tells us that the total energy is
constant.

One point before we go on to many-dimensional motion.
We  have  shown  that  energy  is  conserved,  but  why  is  it  that
momentum  is  not  conserved  in  this  case?  After  all,  in  the
previous  chapter  we  showed  that  for  an  isolated  system  of
particles,  Newton’s  third  law  implies  that  total  momentum  does
not change. The answer is that we have left something out of the
system—namely,  the  object  that  exerts  the  force  on  the  one-
dimensional  particle.  For example, if  the problem has to do with
a  particle  falling  in  a  gravitational  field,  the  gravitational  force  is
exerted  by  the  Earth.  When  the  particle  falls,  its  momentum
changes,  but  that  change  is  exactly  compensated  for  by  a  tiny
change in the motion of the Earth.

More Than One Dimension

It  is  a  fact  that  the  components  of  force  are  derivatives  of
potential energy, but it is not a definition. This is so when there is
more  than  one  x  to  worry  about—because  space  has  more  than
one  dimension,  or  because  there  is  more  than  one  particle,  or
both.  It  is  quite possible  to imagine force laws that do not come
from  differentiating  a  potential  energy  function,  but  nature  does
not make use of such nonconservative forces.

Let’s  be  a  little  more  abstract  than  we  have  so  far  been.
Call  the  coordinates  of  configuration  space  xi  (remember,
configuration  space  is  the  same as  position  space).  For  now,  the
subscript i  will not refer to which particle we are talking about or
which  direction  of  space.  It  runs  over  all  these  possibilities.  In
other words, for a system of N  particles there are 3N  values of i.
Let’s  forget  where  they  come  from;  we  are  simply  considering  a
system of abstract coordinates labeled i.

Now let’s write the equations of motion:
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(4)mi x
××

i = FiH8x<L .

For each coordinate, there is a mass mi  and a component of force
Fi . Each component of force can depend on all positions 8x<.

We have seen in  the  one-dimensional  case  that  the  force
is minus the derivative of the potential energy, as in Eq. (1). This
was  a  definition  of  V ,  not  a  special  condition  on  the  force.  But
when  there  is  more  than  one  dimension,  things  get  more
complicated.  It  is  generally  not  true  that  if  you  have  a  set  of
functions FiH8x<L,  that they can all be derived by differentiating a
single  function  V H8x<L.  It  would  be  a  brand-new  principle  if  we
asserted  that  the  components  of  force  can  be  described  as
(partial) derivatives of a single potential energy function.

Indeed  this  principle  is  not  hypothetical.   It  is  a  basic
mathematical expression of one of the most important  principles
of physics:

For any system there exists a potential V H8x<L such that

(5)FiH8x<L = -
¶V H8x<<

¶xi
.

What law of nature does Eq. (5) represent? You may have already
guessed  that  it  is  the  conservation  of  energy.  We’ll  see  that
shortly, but first let’s try to visualize what it means.

Picture  a  terrain  with  the  function  V H8x<<  representing
the height or altitude at each point. First  of all, the minus sign in
Eq.  (5)  means  that  the  force  points  in  the  downhill  direction.  It
also says that the force is greater along directions where the slope
is  steeper.  For  example,  on  a  contour  map,  there  is  no  force
pushing  along  the  contour  lines.  The  force  vector  points
perpendicular to the contours.

Now let’s  come back and derive energy conservation.  To
do that, we plug Eq. (5) into the equations of motion (4):
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(6)mi x
××

i = -
¶V H8x<<

¶xi
.

The next step is to multiply each of the separate equations in Eq.

(6) by the corresponding velocity x
×

i  and sum them all,

(7)â
i

mi x
×

i x
××

i = -â
i

x
×

i
¶V H8x<<

¶xi
.

Now  we  have  to  manipulate  both  sides  of  the  equation  in  the
same way that we did in the one-dimensional example. We define
the  kinetic  energy  to  be  the  sum  of  all  the  kinetic  energies  for
each coordinate:

T =
1

2
â

i

mi x
×

i
2
.

Here  is  what  the  two sides  of  Eq (7)  give.  First  the  left-
hand side:

â
i

mi x
×

i x
××

i =
d T

d t
.

 
Now the right-hand side:
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-â
i

x
×

i
¶V H8x<<

¶xi
= -

d V

d t
.

Thus we can rewrite Eq. (7) as

(8)
d T

d t
+

d V

d t
= 0.

Precisely  as  in  the  one-dimensional  case,  Eq.  (8)  says  that  the
time derivative of the total energy is zero—energy is conserved.

To picture what is going on, imagine that the terrain has a
frictionless  ball  rolling  on  it.  Whenever  the  ball  rolls  toward  a
lower  altitude  it  picks  up  speed,  and  whenever  it  rolls  uphill  it
loses speed. The calculation tells us this happens in a special way
that conserves the sum of the kinetic and potential energies.

You  might  wonder  why  the  forces  of  nature  are  always
gradients (derivatives) of a single function. In the next chapter we
will  reformulate  classical  mechanics  using  the  principle  of  least
action.  In  this  formulation,  it  is  “built  in”  from  the  very
beginning that there is  a potential  energy function.  But then why
the principle of least action? Ultimately, the answer can be traced
to the laws of  quantum mechanics  and to the origin  of  forces  in
field theory—subjects that, for the moment, are still out of range
for us.  So, why quantum field theory? At some point we have to
give up and say that’s just the way it is. Or, not give up and push
on.

Exercise 2: Consider a particle in two dimensions, x and
y.  The  particle  has  mass  m,  equal  in  both  directions.

The  potential  energy  is  V =
1

2
kIx2

+ y2M.  Work  out  the

equations  of  motion.  Show  that  there  are  circular  orbits
and that all orbits have the same period. Prove explicitly
that the total energy is conserved.
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The  potential  energy  is  V =
1

2
kIx2

+ y2M.  Work  out  the

equations  of  motion.  Show  that  there  are  circular  orbits
and that all orbits have the same period. Prove explicitly
that the total energy is conserved.

Exercise  3:  Rework  Exercise  2  for  the  potential

V =
k

2 Ix2
+ y2M . Are there circular orbits? If so, do they all

have the same period? Is the total energy conserved?

Before moving on to the principle of least action, I  want
to list a few of the different kinds of energy that we talk about in
physics, and review how they fit into the picture. Let’s consider

è mechanical energy
è heat
è chemical energy
è atomic/nuclear energy
è electrostatic energy
è magnetic energy
è radiation energy

Some,  but  not  all,  of  these  distinctions  are  a  bit  old-fashioned.
Mechanical  energy  usually  refers  to  the  kinetic  and  potential  energy
of  large  visible  objects  such  as  planets  or  weights  being  hoisted
by a crane. It often refers to gravitational potential energy.

The  heat  contained  in  a  gas  or  other  collection  of
molecules is also kinetic and potential energy. The only difference
is  that  it  involves  the  large  and  chaotic  motion  of  so  many
particles  that  we  don’t  even  try  to  follow  it  in  detail.  Chemical
energy is also a special case: The energy stored in chemical bonds
is a combination of the potential energy and kinetic energy of the
constituent  particles  that  make  up  the  molecules.  It’s  harder  to
understand  because  quantum  mechanics  has  to  replace  classical
mechanics,  but  nonetheless,  the  energy  is  the  potential  and
kinetic energy of particles. The same goes for atomic and nuclear
energy.

Electrostatic  energy  is  just  another  word  for  the  potential
energy  associated  with  the  forces  of  attraction  and  repulsion
between  electrically  charged  particles.  In  fact,  apart  from
gravitational  energy,  it  is  the primary  form of  potential  energy in
the  ordinary,  classical  world.  It  is  the  potential  energy  between
charged particles in atoms and molecules.

Magnetic energy is tricky, but the force between the poles
of  magnets  is  a  form  of  potential  energy.  The  tricky  part  comes
when  we  think  about  the  forces  between  magnets  and  charged
particles.  Magnetic  forces  on charged particles  are  a  new kind of
beast called velocity-dependent forces. We will come back to this
later in the book.

Finally,  there  is  the  energy  stored  in  electromagnetic
radiation. It can take the form of heat from the sun, or the energy
stored  in  radio  waves,  laser  light,  or  other  forms  of  radiation.  In
some  very  general  sense,  it  is  a  combination  of  kinetic  and
potential energy, but it is not the energy of particles (not until we
get to quantum field theory, anyway) but, of fields. So we will set
electromagnetic energy aside until a later book.
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Lecture 6: The Principle of Least Action
Lenny  was  frustrated—not  a  good  sign  considering  his  size  and
strength—and  his  head  hurt.  “George,  I  can’t  remember  all  this
stuff!  Forces,  masses,  Newton’s  equations,  momentum,  energy.
You told me that  I  didn’t  need to memorize  stuff  to do physics.
Can’t you make it just one thing to remember?”

“Okay,  Lenny.  Calm  down.  I’ll  make  it  simple.  All  you
have to remember is that the action is always stationary.”

The Transition to Advanced Mechanics

The  principle  of  least  action—really  the  principle  of  stationary
action—is  the  most  compact  form  of  the  classical  laws  of
physics.  This  simple  rule  (it  can  be  written  in  a  single  line)
summarizes  everything!  Not  only  the  principles  of  classical
mechanics,  but  electromagnetism,  general  relativity,  quantum
mechanics,  everything  known  about  chemistry—right  down  to
the ultimate known constituents of matter, elementary particles. 

Let’s  begin  with  a  general  observation  about  the  basic
problem  of  classical  mechanics,  namely  this  problem  is  to
determine  the  trajectories  (or  orbits)  of  systems  from  their
equations  of  motion.  We  usually  express  the  problem  by
postulating  three  things:  the  masses  of  the  particles,  a  set  of
forces FH8x<L (or, even better, a formula for the potential energy),
and  an  initial  condition.  The  system  begins  with  some  values  of
the  coordinates  and  velocities  and  then  moves,  according  to
Newton’s second law, under the influence of the given forces.  If
there  are  a  total  of  N  coordinates,  Hx1, x2, …, xN L,  then  the

initial  conditions  consist  of  specifying  the  2N  positions  and
velocities.  For  example,  at  an  initial  time  t0,  we  can  specify  the

positions  8x<  and  velocities  9x× =  and  then  solve  the  equations  to

find out what the positions and velocities will be at the later time
t1.  In  the  process,  we will  usually  determine  the  whole  trajectory
between t0 and t1 (see Figure 1).
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Figure 1: A trajectory from time t0 to time t1.

But we can formulate  the problem of classical mechanics
in  another  way  that  also  involves  specifying  2N  items  of
information.  Instead  of  providing  the  initial  positions  and
velocities,  we  provide  the  initial  and  final  positions.  Here  is  the
way to think about it: Suppose that an outfielder wants to throw a
baseball  (from x0  at  time  t0)  and  he  wants  it  to  arrive  at  second
base Hx1L after exactly 1.5 seconds Ht1L. How does the ball have to
move  in  between?  Part  of  the  problem  in  this  case  will  be  to
determine what the initial velocity of the ball has to be. The initial
velocity  is  not  part  of  the  input  data  in  this  way  of  posing  the
question; it is part of the solution.

Let’s draw a space-time picture to illustrate the point (see
Figure 2). The horizontal axis shows the position of a particle (or
the  baseball),  and  the  vertical  axis  denotes  the  time.  The
beginning  and  end  of  the  trajectory  are  a  pair  of  points  on  the

space-time diagram, and the trajectory itself is a curve connecting
the points.
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space-time diagram, and the trajectory itself is a curve connecting
the points.

xHt0L
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x

t
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t1

Figure 2: A trajectory of the baseball.

The  two  ways  of  posing  the  problem  of  motion  are
analogous  to  two  ways  of  formulating  the  problem  of  fixing  a
straight  line  in  space.  One  thing  we  could  ask  is  to  construct  a
straight  line  from  the  origin  that  begins  in  some  particular
direction.  That’s  like  asking  for  the  trajectory  given  the  initial
position  and  velocity.  On  the  other  hand,  we  could  ask  to
construct  a straight line that connects two particular points.  That
is  like  finding  the  trajectory  that  begins  at  one  position  and
arrives at another position after a specified time. In this form, the
problem  is  similar  to  asking  how  we  have  to  aim  a  line  from
some  initial  point  so  that  it  passes  through  another  point.  The
answer:  Find  the  shortest  path  between  the  points.  In  the
problems of classical mechanics, the answer is to find the path of
stationary action.

Action and the Lagrangian

Formulating  the  action  principle  involves  exactly  the  same
parameters  as  formulating  Newton’s  equations.  You  have  to
know  the  masses  of  the  particles,  and  you  have  to  know  the
potential  energy.  The  action  for  a  trajectory  is  an  integral  from
the  start  of  the  trajectory  at  t0  to  the  end  of  the  trajectory  at  t1.
I’ll  just  tell  you  what  the  integral  is—no  motivation—and  then
we’ll  explore  the  consequences  of  minimizing  it.1  We’ll  end  up

with  Newton's  equations.  Once  we  see  how  that  works,  any
further  motivation  will  be  unnecessary.  If  it’s  equivalent  to
Newton’s equations, what more motivation do we need?

Before  being  general,  let’s  illustrate  the  idea  for  a  single
particle moving on a line. The position of the particle at time t  is

xHtL, and its velocity is x
× HtL. The kinetic and potential energies are
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particle moving on a line. The position of the particle at time t  is

xHtL, and its velocity is x
× HtL. The kinetic and potential energies are

T =
1

2
m x

× 2

V = V HxL,
respectively. The action of a trajectory is written

(1)

A = à
t0

t1HT - V L d t

= à
t0

t1 1

2
m x

× 2
- V HxL d t .

You might think that there is a typo in Eq. (1). The energy is the
sum  of  T  and  V ,  but  the  integral  involves  the  difference.  Why
the  difference  and not  the  sum?  You can try  the  derivation  with
T + V ,  but  you’ll  get  the  wrong  answer.  The  quantity  T - V  is

1. I use the term minimizing because, to my knowledge, there is no verb
to  express  making  a  quantity  stationary.  I  tried  stationaryizing,
stationizing, and a few others, but I eventually gave up and took the
path  of  least  action.  But  remember,  least  action  really  means
stationary action.

called  the  Lagrangian  of  the  system,  and  it’s  denoted  by  the
symbol  L.   The  things  you  need  to  know  to  specify  L  are  the
mass  of  the  particle  (for  the  kinetic  energy)  and  the  potential
V HxL.  It  is,  of course,  no accident that these are the same things
you need to know to write Newton's equation of motion.

Think  of  the  Lagrangian  as  a  function  of  the  position  x

and  the  velocity  x
×
.  It's  a  function  of  position  because  the

potential  energy  depends  on  x,  and  it's  a  function  of  velocity

because the kinetic energy depends on x
×
. So we write
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.  It's  a  function  of  position  because  the

potential  energy  depends  on  x,  and  it's  a  function  of  velocity

because the kinetic energy depends on x
×
. So we write

L = LIx, x
× M.

We can rewrite the action as the integral of the Lagrangian:

(2)A = à
t0

t1LIx, x
× M d t .

The  principle  of  stationary  action  is  really  very  remarkable.  It
almost  seems  that  the  particle  must  have supernatural  powers  to
feel  out  all  the  possible  trajectories  and  pick  the  one  that  makes
the  action  stationary.  Let’s  pause  to  consider  what  we  are  doing
and where we are going.

The  process  of  minimizing  the  action  is  a  generalization
of minimizing a function.  The action is  not  an ordinary  function
of  a  few variables.  It  depends  on an infinity  of  variables:  All  the
coordinates  at  every  instant  of  time.  Imagine  replacing  the
continuous trajectory by a “stroboscopic” trajectory consisting of
a  million  points.  Each  point  is  specified  by  a  coordinate  x,  but
the  whole  trajectory  is  specified  only  when  a  million  x’s  are
specified. The action is a function of the whole trajectory, so it is
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a function of a million variables. Minimizing the action involves a
million equations.

Time  is  not  really  stroboscopic,  and  a  real  trajectory  is  a
function of a continuously infinite number of variables. To put it
another way, the trajectory is specified by a function x HtL, and the
action  is  a  function  of  a  function.  A  function  of  a  function—a
quantity that depends on an entire function—is called a functional.
Minimizing a functional is the subject of a branch of mathematics
called the calculus of variations.

Nevertheless,  despite  the  differences  from  ordinary
functions, the condition for a stationary action strongly resembles
the  condition  for  a  stationary  point  of  a  function.  In  fact,  it  has
exactly the same form as Eq. (4) in Interlude 3, namely

∆ A = 0.

Now,  however,  the  variations  are  not  just  small  shifts  of  a  few
coordinates,  but  all  the  possible  small  variations  of  a  whole
trajectory.

Later  in  this  lecture  we  will  work  out  the  equations  for
minimizing  the  action.  They  are  called  the  Euler-Lagrange
equations. For the case of a single degree of freedom, there is one
equation at each point along the trajectory.  In fact, the equations
become  differential  equations  that  tell  the  system  how  to  move
from one instant  to the next.  Thus  the particle  does  not  have to
have  supernatural  powers  to  test  out  all  future  trajectories—at
least  no  more  so  than  it  needs  to  follow  Newton’s  equations  of
motion.

We will  derive  the  Euler-Lagrange  equations  later  in  this
lecture.  To  do you a  flavor,  I  will  write  down their  form.  If  you
are  the  independent  type,  you  can  try  to  plug  in  the  Lagrangian
and  see  if  you  can  derive  Newton’s  equation  of  motion.  Here,
then,  is  the  Euler-Lagrange  equation  for  a  single  degree  of
freedom:
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d

d t

¶L

¶x
×

-
¶L

¶x
= 0.

Derivation of the Euler-Lagrange Equation

Let’s see if we can derive the Euler-Lagrange equation for a single
degree  of  freedom.  Start  by  replacing  continuous  time  with
stroboscopic  time. The instants  can be labeled by integers n.  The
time  between  neighboring  instants  is  very  small.  Call  it  D t .  The
action  is  an  integral,  but,  as  always,  an  integral  is  the  limit  of  a
sum. In this case, we are going to think of the sum as being over
the intervals between successive instants.

Here  are  the  replacements  that  we  do  when  we
approximate the integral by the sum:

à L d t = â L D t

x
×

=
xn+1 - xn

D t
.

The first replacement is just the usual approximation of replacing
the  integral  by  a  discrete  sum  of  terms,  each  weighted  with  the
small time interval D t . The second is also familiar. It replaces the

velocity x
×
 with the difference of neighboring positions divided by

the small time interval.
The  last  replacement  is  a  bit  more  subtle.  Since  we  are

going  to  think  of  the  sum  as  being  over  the  small  intervals
between  neighboring  instants,  we  need  an  expression  for  the
position  halfway  between  the  instants.  That’s  easy.  Just  replace
x HtL with the average position between neighboring instants:
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The first replacement is just the usual approximation of replacing
the  integral  by  a  discrete  sum  of  terms,  each  weighted  with  the
small time interval D t . The second is also familiar. It replaces the

velocity x
×
 with the difference of neighboring positions divided by

the small time interval.
The  last  replacement  is  a  bit  more  subtle.  Since  we  are

going  to  think  of  the  sum  as  being  over  the  small  intervals
between  neighboring  instants,  we  need  an  expression  for  the
position  halfway  between  the  instants.  That’s  easy.  Just  replace
x HtL with the average position between neighboring instants:

xHtL =
xn + xn+1

2
.

Notice that everywhere x
×
 occurred in the Lagrangian I replaced it

with  
xn+1-xn

D t
,  and  everywhere  that  x  occurred  I  substituted

xn+xn+1
2

.

The total action is found by adding up all the incremental
contributions:

(3)A = â
n

L
xn+1 - xn

D t
,

xn + xn+1

2
D t .

I  have very  explicitly  taken the action apart  into  its  components,
almost like writing a computer program to evaluate it.

Now suppose we want to minimize the action by varying
any one of  the xn  and setting  the result  equal  to  zero.  Let’s  pick
one  of  them,  say  x8.  (Any  other  one  would  have  been  just  as
good.)  This  sounds  very  complicated,  but  notice  that  x8  appears
only in two of the terms in Eq. (3). The two terms that contain x8
are

A = L
x9 - x8

D t
,

x8 + x9

2
D t +

L
x8 - x7

D t
,

x7 + x8

2
D t .

Now all we have to do is differentiate with respect to x8.  Notice
that x8  appears in two ways in each term. It appears through the
velocity  dependence  and  through  the  x  dependence.  The
derivative of A with respect to x8 is

112 The Theoretical Minimum



Now all we have to do is differentiate with respect to x8.  Notice
that x8  appears in two ways in each term. It appears through the
velocity  dependence  and  through  the  x  dependence.  The
derivative of A with respect to x8 is

¶ A

¶x8
=

1

D t
-

¶L

¶x
×

n=9
+

¶L

¶x
×

n=8
+

1

2

¶L

¶x n=8
+

¶L

¶x n=9
.

The  symbol  ¤n=8  is  an instruction  to  evaluate the  function  at  the
discrete time n = 8.

To  minimize  the  action  with  respect  to  variations  of  x8,
we  set  d A � d x  equal  to  zero.  But  before  we  do,  let’s  see  what
happens  to  d A � d x  in  the  limit  when  D t  tends  to  zero.  Start
with the first term,

1

D t
-

¶L

¶x
×

n=9
+

¶L

¶x
×

n=8
.

This  has the form of the difference between a quantity evaluated
at  two  neighboring  times,  n = 8  and  n = 9,  divided  by  the  small
separation  between  them.  This  obviously  tends  to  a  derivative,
namely

1

D t
-

¶L

¶x
×

n=9
+

¶L

¶x
×

n=8
�-

d

d t

¶L

¶x
×

.

The second term,

1

2

¶L

¶x n=8
+

¶L

¶x n=9
,

also  has  a  simple  limit.  It  is  half  the  sum  of  ¶L
¶x

 evaluated  at

neighboring  times.  As  the  separation  between  the  points  shrinks

to zero, we just get ¶L
¶x

.

The  condition  that  ¶A
¶x8

= 0 becomes  the  Euler-Lagrange

equation,
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also  has  a  simple  limit.  It  is  half  the  sum  of  ¶L
¶x

 evaluated  at

neighboring  times.  As  the  separation  between  the  points  shrinks

to zero, we just get ¶L
¶x

.

The  condition  that  ¶A
¶x8

= 0 becomes  the  Euler-Lagrange

equation,

(4)
d

d t

¶L

¶x
×

-
¶L

¶x
= 0.

Exercise  1:  Show  that  Eq.  (4)  is  just  another  form  of
Newton’s equation of motion F = m a.

The  derivation  is  essentially  the  same  for  many  degrees  of
freedom.  There  is  an  Euler-Lagrange  equation  for  each
coordinate xi :

d

d t

¶L

¶x
×

i

-
¶L

¶xi
= 0.

What  this  derivation  shows  is  that  there  is  no  magic
involved  in  the  ability  of  the  particle  to  feel  out  the  entire  path
before  deciding  which  way  to  go.  At  each  stage  along  the
trajectory,  the particle has only to minimize the action between a
point  in  time  and  a  neighboring  point  in  time.  The  principle  of
least  action  just  becomes  a  differential  equation  at  each  instant
that determines the immediate future.

More Particles and More Dimensions

All  together,  let  there  be  N  coordinates  that  we  call  xi .  The
motion of the system is described by a trajectory, or orbit, through
an  N-dimensional  space.  For  an  even  better  description  we  can
add  time,  thinking  of  the  orbit  as  a  path  through  N + 1
dimensions.  The  starting  point  of  the  trajectory  is  the  set  of
points xiHt0L, and the endpoint is another set of points xiHt1L. The
orbit  through  the  HN + 1)-dimensional  space  is  described  by
giving all the coordinates as functions of time xiHtL.

The principle of least action for more degrees of freedom
is  essentially  no  different  than  the  case  with  only  a  single  degree
of  freedom.  The  Lagrangian  is  the  kinetic  energy  minus  the
potential energy:
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All  together,  let  there  be  N  coordinates  that  we  call  xi .  The
motion of the system is described by a trajectory, or orbit, through
an  N-dimensional  space.  For  an  even  better  description  we  can
add  time,  thinking  of  the  orbit  as  a  path  through  N + 1
dimensions.  The  starting  point  of  the  trajectory  is  the  set  of
points xiHt0L, and the endpoint is another set of points xiHt1L. The
orbit  through  the  HN + 1)-dimensional  space  is  described  by
giving all the coordinates as functions of time xiHtL.

The principle of least action for more degrees of freedom
is  essentially  no  different  than  the  case  with  only  a  single  degree
of  freedom.  The  Lagrangian  is  the  kinetic  energy  minus  the
potential energy:

L = â
i

1

2
mi x

×

i
2

- V H8x<L.

The action is also exactly as before, the integral of the Lagrangian,

(5)A = à
t0

t1LK8x<, 8x<× O d t ,

and the  principle  of  least  (stationary)  action is  that  the  trajectory
minimizes this action.

When there are many variables, we can vary the trajectory
in many ways, for example we can vary x1HtL, or x2HtL, and so on.
It’s  like  minimizing  a  function  of  many  variables:  There  is  an
equation  for  each  variable.  The  same  is  true  for  the  Euler-
Lagrange  equations:  There  is  one  for  each  variable  xi .  Each  one
has the same general form as Eq. (4)

(6)
d

d t

¶L

¶x
×

i

=
¶L

¶xi
.

Exercise  2:  Show  that  Eq.  (6)  is  just  another  form  of

Newton’s equation of motion Fi = mi x
××

i .
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What’s Good about Least Action?

There  are  two  primary  reasons  for  using  the  principle  of  least
action.  First,  it  packages  everything  about  a  system  in  a  very
concise  way.  All  the  parameters  (such  as  the  masses  and forces),
and  all  the  equations  of  motion  are  packaged  in  a  single
function—the  Lagrangian.  Once  you  know  the  Lagrangian,  the
only thing left  to  specify  is  the initial  conditions.  That’s  really  an
advance:  a  single  function  summarizing  the  behavior  of  any
number  of  degrees  of  freedom.  In  future  volumes,  we  will  find
that  whole  theories—Maxwell’s  theory  of  electrodynamics,
Einstein’s  theory  of  gravity,  the  Standard  Model  of  elementary
particles—are each described by a Lagrangian.

The second reason for  using  the  principle  of  least  action
is  the  practical  advantage  of  the  Lagrangian  formulation  of
mechanics.  We’ll  illustrate  it  by an example.  Suppose  we want to
write  Newton’s  equations  in  some other  coordinates,  or  in  some
frame of reference that is moving or accelerating.

Take  the  case  of  a  particle  in  one  dimension  that,  from
the point of view of someone standing at rest,  satisfies Newton’s
laws. The physicist  at rest—call him Lenny—uses the coordinate
x to locate the object.

A  second  physicist—George—is  moving  relative  to
Lenny, and he wants to know how to describe the object relative
to  his  own  coordinates.  First  of  all,  what  does  it  mean  to  talk
about  George’s  coordinates?  Because  George  moves  relative  to
Lenny,  the  origin  of  his  coordinate  frame  moves  relative  to
Lenny’s  origin.  This  is  easily  described  by  changing  coordinates
from Lenny's x to George’s coordinate system X .

Here  is  how  we  do  it.  At  any  time  t ,  Lenny  locates
George’s  origin  at  x + f HtL,  where  f  is  some  function  that

describes how George moves relative to Lenny. An event (at time
t)  that  Lenny  assigns  a  coordinate  x,  George  assigns  coordinate
X  where
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There  are  two  primary  reasons  for  using  the  principle  of  least
action.  First,  it  packages  everything  about  a  system  in  a  very
concise  way.  All  the  parameters  (such  as  the  masses  and forces),
and  all  the  equations  of  motion  are  packaged  in  a  single
function—the  Lagrangian.  Once  you  know  the  Lagrangian,  the
only thing left  to  specify  is  the initial  conditions.  That’s  really  an
advance:  a  single  function  summarizing  the  behavior  of  any
number  of  degrees  of  freedom.  In  future  volumes,  we  will  find
that  whole  theories—Maxwell’s  theory  of  electrodynamics,
Einstein’s  theory  of  gravity,  the  Standard  Model  of  elementary
particles—are each described by a Lagrangian.

The second reason for  using  the  principle  of  least  action
is  the  practical  advantage  of  the  Lagrangian  formulation  of
mechanics.  We’ll  illustrate  it  by an example.  Suppose  we want to
write  Newton’s  equations  in  some other  coordinates,  or  in  some
frame of reference that is moving or accelerating.

Take  the  case  of  a  particle  in  one  dimension  that,  from
the point of view of someone standing at rest,  satisfies Newton’s
laws. The physicist  at rest—call him Lenny—uses the coordinate
x to locate the object.

A  second  physicist—George—is  moving  relative  to
Lenny, and he wants to know how to describe the object relative
to  his  own  coordinates.  First  of  all,  what  does  it  mean  to  talk
about  George’s  coordinates?  Because  George  moves  relative  to
Lenny,  the  origin  of  his  coordinate  frame  moves  relative  to
Lenny’s  origin.  This  is  easily  described  by  changing  coordinates
from Lenny's x to George’s coordinate system X .

Here  is  how  we  do  it.  At  any  time  t ,  Lenny  locates
George’s  origin  at  x + f HtL,  where  f  is  some  function  that

describes how George moves relative to Lenny. An event (at time
t)  that  Lenny  assigns  a  coordinate  x,  George  assigns  coordinate
X  where

X = x - f HtL.
When  Lenny  sees  a  particle  moving  on  the  trajectory  xHtL,
George  sees  the  same  particle  moving  on  the  trajectory
X = xHtL - f HtL.  If  George  does  not  want  to  keep  asking  Lenny

what  the  trajectory  is,  then  he  wants  his  own  laws  of  motion  to
describe  the  object  from  his  coordinates.  The  easiest  way  to  do
this  is  to  transform  the  equations  of  motion  from  one  coordinate
system  to  another  is  to  use  the  principle  of  least  action,  or  the
Euler-Lagrange equations.

According to Lenny, the action of a trajectory is

(7)A = à
t0

t1 1

2
m x

× 2
- V HxL d t .

But  we  can  also  write  the  action  in  terms  of  George’s

coordinates. All we have to do is to express x
×
 in terms of X

×

:

x
×

= X
×

+ f
×

.

So we plug this into Eq. (7) to get

A = à
t0

t1 1

2
mK X

×

+ f
× O2

- V HXL d t .

The  potential  energy  V HXL  simply  means  the  potential  energy
that  Lenny  would  use,  evaluated  at  the  object’s  location,  but
expressed  in  George’s  coordinates—same  point,  different  label.
And now we know the Lagrangian in the X  frame of reference,
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L =
1

2
mK X

×

+ f
× O2

- V HXL,

where we can expand the square:

(8)L =
1

2
m X

× 2
+ 2 X

×

f
×

+ f
× 2

- V HXL.

What does George do with Eq. (8)? He writes the Euler-Lagrange
equation. Here is what he gets:

m X
××

+ m f
××

= -
d V

d X
,

or, with a small rearrangement,

m X
××

= -
d V

d X
- m f

××

.

The result is nothing surprising. George sees an extra, “fictitious”

force  on  the  object  equal  to  -m f
××

.  What  is  interesting  is  the

procedure:  Instead  of  transforming  the  equation  of  motion,  we
worked directly with the Lagrangian.

Let’s  do  another  example.  This  time  George  is  on  a
rotating  carousel.  Lenny’s  coordinates  are  x  and  y.  George’s

coordinate  frame  is  X  and  Y ,  and  it  rotates  with  the  carousel.
Here is the connection between the two frames:

(9)
x = X cos Ω t + Y sin Ω t
y = -X sin Ω t + Y cos Ω t .

Both  observers  see  a  particle  moving  in  the  plane.  Let’s  assume
that  Lenny  observes  that  the  particle  moves  with  no  forces
.                     

acting  on  it.  He  describes  the  motion  using  the  action  principle
with Lagrangian
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acting  on  it.  He  describes  the  motion  using  the  action  principle
with Lagrangian

(10)L =
m

2
Jx× 2

+ y
× 2N.

What  we  want  to  do  is  express  the  action  in  George’s
rotating  frame  and  then  use  the  Euler-Lagrange  equations  to
figure  out  the  equations  of  motion.  Since  we  already  know  the
action in Lenny’s frame, all we need to do is express the velocity
in  his  frame  in  terms  of  George’s  variables.  Just  differentiate
Equations (9) with respect to time:

x
×

= X
×

cos Ω t - Ω X sin Ω t + Y
×

sin Ω t

+ Ω Y cos Ω t

y
×

= -X
×

sin Ω t - Ω X cos Ω t + Y
×

cos Ω t

- Ω Y sin Ω t .

After a little bit  of algebra using sin2 + cos2 = 1, here is what we

get for x
× 2

+ y
× 2

(11)
x
× 2

+ y
× 2

= X
× 2

+ Y
× 2

+ Ω2IX2 + Y 2M +

2 ΩKX
×

Y - Y
×

XO.

Now all  we have to do is  plug Eq. (11)  into Lenny’s  Lagrangian,
Eq.  (10),  to  get  George’s  Lagrangian.  It’s  the  same  Lagrangian
except expressed in George’s coordinates:
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(12)
L =

m

2
X

× 2
+ Y

× 2
+

m Ω2

2
IX2 + Y 2M +

m ΩKX
×

Y - Y
×

XO.

Let’s  examine the various  terms.  The first  term,  m
2

X
× 2

+ Y
× 2

,  is

familiar—it’s  just  what  George  would  call  the  kinetic  energy.
Notice that if angular velocity were zero, that’s all there would be.

The  next  term,  m Ω2IX2 + Y 2M,  is  something  new  due  to  the

rotation. What it looks like to George is a potential energy,

V = -m Ω2IX2 + Y 2M,
which can easily be seen to create an outward force proportional
to the distance from the center of rotation:

F = m Ω2 r
®

.

This is nothing but the centrifugal force.
The last term in Eq. (12) is a little less familiar. It is called

the  Coriolis  force.  To  see  how  it  all  works,  we  can  work  out  the
Euler-Lagrange equations. Here is what we get:

m X
××

= m Ω2 X - 2 m Ω Y
×

m Y
××

= m Ω2 Y + 2 m Ω X
×

.

This  looks  exactly  like  Newton’s  equations  with  centrifugal  and
Coriolis forces. Notice that there is something new in the form of
the force law. The components of the Coriolis force,
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FX = -2 m Ω Y
×

FY = 2 m Ω X
×

,

depend  not  only  on  the  position  of  the  particle  but  also  on  its
velocity. The Coriolis force is a velocity-dependent force.

Exercise  3:  Use  the  Euler-Lagrange  equations  to  derive
the equations of motion from this Lagrangian.

The  main  point  of  this  exercise  was  not  so  much  to
derive the centrifugal  and Coriolis  forces  as to show you how to
transform  a  mechanics  problem  from  one  coordinate  system  to
another  by  simply  rewriting  the  Lagrangian  in  the  new
coordinates.  This  is,  by  far,  the  easiest  way  to  do  the
transformation—a  lot  easier  than  trying  to  transform  Newton’s
equations directly.

Another  example,  which  we  will  leave  to  you,  is  to
transform George’s equations to polar coordinates:

X = R cos Θ

Y = R sin Θ .

Exercise  4:  Work  out  George’s  Lagrangian  and  Euler-
Lagrange equations in polar coordinates.

Generalized Coordinates and Momenta

There  is  really  nothing  very  general  about  Cartesian  coordinates.
There  are  many  coordinate  systems  that  we  can  choose  to
represent  any mechanical  system.  For  example,  suppose  we want
to study the motion of an object moving on a spherical surface—
say,  the  Earth’s  surface.  In  this  case,  Cartesian  coordinates  are
not  of  much  use:  The  natural  coordinates  are  two  angles,
longitude  and  latitude.  Even  more  general  would  be  an  object
rolling  on  a  general  curved  surface  like  a  hilly  terrain.  In  such  a
case, there may not be any special set of coordinates.  That’s why
it is important  to set up the equations of classical mechanics in a
general way that applies to any coordinate system.

Consider  an  abstract  problem  in  which  a  system  is
specified  by  a  general  set  of  coordinates.  We  usually  reserve  the
notations xi  for Cartesian coordinates. The notation for a general
system  of  coordinates  is  called  qi .  The  qi  could  be  Cartesian

coordinates,  or  polar  coordinates,  or  anything  else  we  can  think
of.

We  also  need  to  specify  the  velocities,  which  in  the
abstract situation means the time derivatives of the qi  generalized

coordinates. An initial condition consists of the set of generalized

coordinates and velocities Iqi , q
×

iM.
In  a  general  coordinate  system,  the  equations  of  motion

may  be  complicated,  but  the  action  principle  always  applies.  All
systems  of  classical  physics—even  waves  and  fields—are
described  by  a  Lagrangian.  Sometimes  the  Lagrangian  is
calculated  from  some  previous  knowledge.  An  example  is
calculating  George’s  Lagrangian,  knowing  Lenny’s.  Sometimes
the  Lagrangian  is  guessed  on  the  basis  of  some  theoretical
prejudices  or  principles,  and  sometimes  we  deduce  it  from
experiments.  But  however  we  get  it,  the  Lagrangian  neatly
summarizes all the equations of motion in a simple package.

Why  are  all  systems  described  by  action  principles  and
Lagrangians?  It’s  not  easy  to  say,  but  the  reason  is  very  closely
related  to  the  quantum  origins  of  classical  physics.  It  is  also
closely  related  to  the  conservation  of  energy.  For  now,  we  are
going  to  it  take  as  given  that  all  known  systems  of  classical
physics can be described in terms of the action principle.

The  Lagrangian  is  always  a  function  of  the  coordinates

and the velocities, L = LIqi , q
×

iM, and the action principle is always
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There  is  really  nothing  very  general  about  Cartesian  coordinates.
There  are  many  coordinate  systems  that  we  can  choose  to
represent  any mechanical  system.  For  example,  suppose  we want
to study the motion of an object moving on a spherical surface—
say,  the  Earth’s  surface.  In  this  case,  Cartesian  coordinates  are
not  of  much  use:  The  natural  coordinates  are  two  angles,
longitude  and  latitude.  Even  more  general  would  be  an  object
rolling  on  a  general  curved  surface  like  a  hilly  terrain.  In  such  a
case, there may not be any special set of coordinates.  That’s why
it is important  to set up the equations of classical mechanics in a
general way that applies to any coordinate system.

Consider  an  abstract  problem  in  which  a  system  is
specified  by  a  general  set  of  coordinates.  We  usually  reserve  the
notations xi  for Cartesian coordinates. The notation for a general
system  of  coordinates  is  called  qi .  The  qi  could  be  Cartesian

coordinates,  or  polar  coordinates,  or  anything  else  we  can  think
of.

We  also  need  to  specify  the  velocities,  which  in  the
abstract situation means the time derivatives of the qi  generalized

coordinates. An initial condition consists of the set of generalized

coordinates and velocities Iqi , q
×

iM.
In  a  general  coordinate  system,  the  equations  of  motion

may  be  complicated,  but  the  action  principle  always  applies.  All
systems  of  classical  physics—even  waves  and  fields—are
described  by  a  Lagrangian.  Sometimes  the  Lagrangian  is
calculated  from  some  previous  knowledge.  An  example  is
calculating  George’s  Lagrangian,  knowing  Lenny’s.  Sometimes
the  Lagrangian  is  guessed  on  the  basis  of  some  theoretical
prejudices  or  principles,  and  sometimes  we  deduce  it  from
experiments.  But  however  we  get  it,  the  Lagrangian  neatly
summarizes all the equations of motion in a simple package.

Why  are  all  systems  described  by  action  principles  and
Lagrangians?  It’s  not  easy  to  say,  but  the  reason  is  very  closely
related  to  the  quantum  origins  of  classical  physics.  It  is  also
closely  related  to  the  conservation  of  energy.  For  now,  we  are
going  to  it  take  as  given  that  all  known  systems  of  classical
physics can be described in terms of the action principle.

The  Lagrangian  is  always  a  function  of  the  coordinates

and the velocities, L = LIqi , q
×

iM, and the action principle is always
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There  is  really  nothing  very  general  about  Cartesian  coordinates.
There  are  many  coordinate  systems  that  we  can  choose  to
represent  any mechanical  system.  For  example,  suppose  we want
to study the motion of an object moving on a spherical surface—
say,  the  Earth’s  surface.  In  this  case,  Cartesian  coordinates  are
not  of  much  use:  The  natural  coordinates  are  two  angles,
longitude  and  latitude.  Even  more  general  would  be  an  object
rolling  on  a  general  curved  surface  like  a  hilly  terrain.  In  such  a
case, there may not be any special set of coordinates.  That’s why
it is important  to set up the equations of classical mechanics in a
general way that applies to any coordinate system.

Consider  an  abstract  problem  in  which  a  system  is
specified  by  a  general  set  of  coordinates.  We  usually  reserve  the
notations xi  for Cartesian coordinates. The notation for a general
system  of  coordinates  is  called  qi .  The  qi  could  be  Cartesian

coordinates,  or  polar  coordinates,  or  anything  else  we  can  think
of.

We  also  need  to  specify  the  velocities,  which  in  the
abstract situation means the time derivatives of the qi  generalized

coordinates. An initial condition consists of the set of generalized

coordinates and velocities Iqi , q
×

iM.
In  a  general  coordinate  system,  the  equations  of  motion

may  be  complicated,  but  the  action  principle  always  applies.  All
systems  of  classical  physics—even  waves  and  fields—are
described  by  a  Lagrangian.  Sometimes  the  Lagrangian  is
calculated  from  some  previous  knowledge.  An  example  is
calculating  George’s  Lagrangian,  knowing  Lenny’s.  Sometimes
the  Lagrangian  is  guessed  on  the  basis  of  some  theoretical
prejudices  or  principles,  and  sometimes  we  deduce  it  from
experiments.  But  however  we  get  it,  the  Lagrangian  neatly
summarizes all the equations of motion in a simple package.

Why  are  all  systems  described  by  action  principles  and
Lagrangians?  It’s  not  easy  to  say,  but  the  reason  is  very  closely
related  to  the  quantum  origins  of  classical  physics.  It  is  also
closely  related  to  the  conservation  of  energy.  For  now,  we  are
going  to  it  take  as  given  that  all  known  systems  of  classical
physics can be described in terms of the action principle.

The  Lagrangian  is  always  a  function  of  the  coordinates

and the velocities, L = LIqi , q
×

iM, and the action principle is always

∆A = ∆ à
t0

t1LIqi , q
×

iM d t = 0.

This  means  that  the  equations  are  of  the  Euler-Lagrange  form.
Here,  then,  is  the  most  general  form  of  classical  equations  of
motion. There is an equation for each qi

(13)
d

d t

¶L

¶q
×

i

=
¶L

¶qi
.

That’s  it,  all  of  classical  physics  in  a  nutshell!  If  you  know  what
the qi ’s are, and if you know the Lagrangian, then you have it all.

Let’s look a little closer at the two sides of Eq. (13). Begin

with  the  expression  ¶L

¶q
×
i
.  Suppose  for  a  moment  that  the  qi ’s  are

the ordinary Cartesian coordinates of a particle and L  is the usual
kinetic energy minus potential energy. In this case, the Lagrangian

would  contain  m
2

x
× 2

 and  then  ¶L

¶q
×
i

 would  just  be  m x
×
—in  other

words, the component of momentum in the x  direction. We then

call  ¶L

¶q
×
i

 the  generalized  momentum  conjugate  to  qi  or  just  the  conjugate

momentum to qi .

The  concept  of  conjugate  momentum  transcends  the
simple example in which momentum comes out to be mass times
velocity. Depending on the Lagrangian, the conjugate momentum
may not be anything you recognize, but it is always defined by
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That’s  it,  all  of  classical  physics  in  a  nutshell!  If  you  know  what
the qi ’s are, and if you know the Lagrangian, then you have it all.

Let’s look a little closer at the two sides of Eq. (13). Begin

with  the  expression  ¶L

¶q
×
i
.  Suppose  for  a  moment  that  the  qi ’s  are

the ordinary Cartesian coordinates of a particle and L  is the usual
kinetic energy minus potential energy. In this case, the Lagrangian

would  contain  m
2

x
× 2

 and  then  ¶L

¶q
×
i

 would  just  be  m x
×
—in  other

words, the component of momentum in the x  direction. We then

call  ¶L

¶q
×
i

 the  generalized  momentum  conjugate  to  qi  or  just  the  conjugate

momentum to qi .

The  concept  of  conjugate  momentum  transcends  the
simple example in which momentum comes out to be mass times
velocity. Depending on the Lagrangian, the conjugate momentum
may not be anything you recognize, but it is always defined by

pi =
¶L

¶q
×

i

.

The notation for generalized momentum is pi .

With that definition, the Euler-Lagrange equations are

d pi

d t
=

¶L

¶qi
.

Let’s  do  a  couple  of  examples  starting  with  a  particle  in  polar
coordinates. In this case the qi ’s are the radius, r , and the angle, Θ.

We can use the result from Exercise 4 to get the Lagrangian:

L =
m

2
r
×2

+ r2 Θ
× 2

.

The generalized momentum conjugate to r  (the r  momentum) is

pr =
¶L

¶ r
×

= m r
×
,

and the corresponding equation of motion is

d pr

d t
=

¶L

¶ r
= m r Θ

× 2
.

Using p
×

= m r
××
 and canceling m from both sides, we can write this

equation in the form

r
××

= r Θ
× 2

.

The  equation  of  motion  for  the  angle  Θ  is  especially
interesting. First consider the conjugate momentum to Θ:
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pΘ =
¶L

¶ Θ
×

= m r2 Θ
×

.

This quantity should be familiar.  It is the angular momentum  of the
particle. Angular momentum and pΘ are exactly the same thing.

Now consider the equation of motion for Θ. Since Θ itself
does  not  appear  in  the  Lagrangian,  there  is  no  right-hand  side,
and we have

(14)
d pΘ

d t
= 0.

In other words, angular momentum is conserved. Another way to
write Eq. (14) is

(15)
d

d t
Km r2 Θ

× O = 0.

We  can  see  that  r2 Θ
×

 is  a  constant.  That’s  why  angular  velocity
increases as a particle gets closer to the origin.

Exercise  5:  Use  these  results  to  predict  the  motion  of  a
pendulum of length l.

Cyclic Coordinates

As  we’ve  just  seen,  it  sometimes  happens  that  some  coordinate
does not appear in the Lagrangian though its  velocity does.  Such
coordinates are called cyclic (I don’t know why.)

What we do know is that the Lagrangian does not change
when  you  shift  the  value  of  a  cyclic  coordinate.  Whenever  a
coordinate  is  cyclic,  its  conjugate  momentum  is  conserved.
Angular  momentum  is  one  example.  Another  is  ordinary  (linear)
momentum. Take the case of a single particle with Lagrangian
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As  we’ve  just  seen,  it  sometimes  happens  that  some  coordinate
does not appear in the Lagrangian though its  velocity does.  Such
coordinates are called cyclic (I don’t know why.)

What we do know is that the Lagrangian does not change
when  you  shift  the  value  of  a  cyclic  coordinate.  Whenever  a
coordinate  is  cyclic,  its  conjugate  momentum  is  conserved.
Angular  momentum  is  one  example.  Another  is  ordinary  (linear)
momentum. Take the case of a single particle with Lagrangian

L =
m

2
Jx× 2

+ y
× 2

+ z
× 2N.

None of the coordinates appear in the Lagrangian, so they are all
cyclic. Again, there is  nothing particularly cyclic about them—it’s
just  a word.  Therefore,  all  of  the components  of  momentum are
conserved. This would not be true if there were a potential energy
that depended on the coordinates.

Let’s  take  another  case:  two  particles  moving  on  a  line
with  a  potential  energy  that  depends  on  the  distance  between
them. For  simplicity  I’ll  take the masses  to be equal,  but  there is
nothing  special  about  that  case.  Let’s  call  the  positions  of  the
particles x1 and x2. The Lagrangian is

(16)L =
m

2
Jx× 1

2
+ x

×

2
2N - V Hx1 - x2L.

Now the  Lagrangian  depends  on  both  x1  and  x2,  and  neither  is
cyclic. Neither momentum is conserved.

But  that’s  missing  an  important  point.  Let’s  make  a
change of coordinates. Define x+ and x- as

x+ =
Hx1 + x2L

2

x- =
Hx1 - x2L

2
.

We can easily rewrite the Lagrangian. The kinetic energy is

T = mJx× +
2

+ x
×

-
2N.

Exercise 6: Explain how we derived this.
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Exercise 6: Explain how we derived this.

The important point is that the potential energy depends only on
x -. The Lagrangian is then

L = mJx× +
2

+ x
×

-
2N - V Hx-L.

In other words,  there was a hidden cyclic coordinate,  namely x+.
This  means  that  the  conjugate  momentum  to  x+  (call  it  p+)  is

conserved.  It  is  easy  to  see  that  p+  is  nothing  but  the  total

momentum,

p+ = 2 m x
×

+ = m x
×

1 + m x
×

2.

The  real  point  that  we will  come to  in  the  next  lecture  is  not  so
much about cyclic coordinates but about symmetries.
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Lecture 7: Symmetries and Conservation 
Laws

Lenny had trouble reading maps. It always seemed like whichever
way he was facing must be north. He wondered why he had more
trouble  with  NSEW  than  he  did  with  up  and  down.  He  could
almost always get up and down right.

Preliminaries

The  relationship  between  symmetries  and  conservation  laws  is
one  of  the  big  main  themes  of  modern  physics.  We’re  going  to
begin  by  giving  some  examples  of  conservation  laws  for  some
simple  systems.  At  first,  the  fact  that  certain  quantities  are
conserved will  seem somewhat accidental—hardly things of deep
principle.  Our  real  goal,  however,  is  not  to  identify  accidental
conserved quantities, but to identify a set of principles connecting
them to something deeper.

We’ll begin with the system that we studied at the end of
Lecture  6  in  Eq.  (16),  but  let’s  free  it  from  the  interpretation  of
particles  moving  on  a  line.  It  could  be  any  system  with  two
coordinates:  particles,  fields,  rotating  rigid  bodies,  or  whatever.
To  emphasize  the  broader  context,  let’s  call  the  coordinates  q

instead  of  x  and  write  a  Lagrangian  of  similar—but  not  quite
identical—form:

(1)L =
1

2
Jq× 1

2
+ q

×

2
2N - V Hq1 - q2L.

The  potential  is  a  function  of  one  combination  of  variables,
namely  Hq1 - q2L.  Let’s  denote  the  derivative  of  the  potential  V

by V '. Here are the equations of motion:



The  potential  is  a  function  of  one  combination  of  variables,
namely  Hq1 - q2L.  Let’s  denote  the  derivative  of  the  potential  V

by V '. Here are the equations of motion:

(2)
p
×

1 = -V ' Hq1 - q2L
p
×

2 = +V ' Hq1 - q2L.

Exercise  1:  Derive  Equations  (2)  and  explain  the  sign
difference.

Now add the two equations together to see that the sum p1 + p2

is conserved.
Next,  let’s  do  something  slightly  more  complicated.

Instead of the potential being a function of Hq1 - q2L, let’s have it

be  a  function  of  a  general  linear  combination  of  q1  and  q2.  Call

the combination Ha q1 - b q2L. The potential then has the form

(3)V Hq1, q2L = V Ha q1 - b q2L.
For this case the equations of motion are

p
×

1 = -a V ' Ha q1 - b q2L
p
×

2 = +b V ' Ha q1 - b q2L.
It  seems that  we’ve lost  the conservation  law; adding the

two equations does not give the conservation of p1 + p2.

But  the  conservation  law  has  not  been  lost;  it  just
changed a little bit. By multiplying the first equation by b  and the
second by a  and then adding them, we can see that b p1 + a p2  is

conserved.

Exercise 2: Explain this conservation.
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Exercise 2: Explain this conservation.

On the other hand, suppose the potential is a function of
some  other,  more  general  combination  of  the  q’s,  such  as

q1 + q2
2.  Then there is  no conserved combination of the p’s.  So,

then,  what  is  the  principle?  What  determines  whether  there  are
conservation  laws  and  what  they  are?  The  answer  has  been
known  for  almost  100  years  from  the  work  of  the  German
mathematician Emmy Noether.

Examples of Symmetries

Let’s  consider  a  change  of  coordinates  from  qi  to  a  new  set  qi '.

Each qi ' is a function of all of the original q coordinates:

qi ' = qi ' HqiL.
There  are two ways to think about  a change of  coordinates.  The
first  way is  called passive.  You don’t  do anything to the system—
just relabel the points of the configuration space.

For  example,  suppose  that  the  x  axis  is  labeled with  tick
marks,  x = . . . , -1, 0, 1, 2, . . .  and  there  is  a  particle  at  x = 1.
Now  suppose  you  are  told  to  perform  the  coordinate
transformation

(4)x ' = x + 1.

According  to  the  passive  way  of  thinking,  the  transformation
consists  of  erasing  all  the  labels  and  replacing  them  with  new
ones.  The  point  formerly  known  as  x = 0  is  now  called  x ' = 1.
The point  formerly  known as x = 1 is  now called x ' = 2, and so
. 
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According  to  the  passive  way  of  thinking,  the  transformation
consists  of  erasing  all  the  labels  and  replacing  them  with  new
ones.  The  point  formerly  known  as  x = 0  is  now  called  x ' = 1.
The point  formerly  known as x = 1 is  now called x ' = 2, and so
. 

on. But the particle is left where it was (if it was at x = 1, then the
new labeling puts it at x ' = 2); only the label has changed.

In  the  second  way  of  thinking  about  coordinate
transformations, which is called active, you don't relabel the points
at  all.  The  transformation  x ' = x + 1  is  interpreted  as  an
instruction:  Wherever  the  particle  is,  move  it  one  unit  to  the
right.  In  other  words,  it  is  an  instruction  to  actually  move  the
system to a new point in the configuration space.

In  what  follows,  we  will  adopt  the  active  point  of  view.
Whenever  I  make  a  change  of  coordinates,  it  means  that  the
system is actually displaced to the new point in the configuration
space.  In  general,  when  we  make  a  transformation,  the  system
actually  changes.  If,  for  example,  we  move  an  object,  the
potential energy—and therefore the Lagrangian—may change.

Now I can explain what a symmetry means. A symmetry is
an  active  coordinate  transformation  that  does  not  change  the
value  of  the  Lagrangian.  In  fact,  no  matter  where  the  system  is
located  in  the  configuration  space,  such  a  transformation  does
not change the Lagrangian.

Let’s  take  the  simplest  example:  a  single  degree  of
freedom with Lagrangian

L =
1

2
q
× 2

.

Suppose  we  make  a  change  in  the  coordinate  q  by  shifting  it  an

amount  ∆.  In  other  words,  any  configuration  is  replaced  by
another in which q has been shifted (see Figure 1).
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∆

q q + ∆

Figure 1: Shifting the coordinate of a point, q, by ∆.

If  the shift  ∆  does  not  depend on time (as  we will  assume),  then

the  velocity  q
×

 does  not  change,  and—most  important—neither

does the Lagrangian. In other words, under the change

(5)q ® q + ∆,

the change in the Lagrangian is ∆ L = 0.
In Eq. (5) the quantity ∆ can be any number. Later, when

we consider  transformations  by  infinitesimal  steps,  the  symbol  ∆
will  be  used  to  represent  infinitesimal  quantities,  but  for  now  it
doesn’t matter.

We could consider a more complicated Lagrangian with a
potential  energy  V HqL.  Unless  the  potential  is  a  constant

independent of q, then the Lagrangian will change as q  is shifted.

In  that  case  there  is  no  symmetry.  The  symmetry  of  moving  a
system in space by adding a constant  to the coordinates  is  called
translation symmetry, and we will spend a lot of time discussing it.

Now look  at  Equations  (2).  Suppose  we shift  q1  but  not

q2.  In  that  case  the  Lagrangian  will  change  because  the  potential

energy  changes.  But  if  we  shift  both  coordinates  by  the  same
amount  so  that  q1 - q2  does  not  change,  then  the  value  of  the

Lagrangian  is  unchanged.  We  say  that  the  Lagrangian  is  invariant
under the change

(6)
q1 ® q1 + ∆

q2 ® q2 + ∆.

We  say  that  the  Lagrangian  is  symmetric  with  respect  to  the
transformation in Equations (6). Again this is a case of translation
symmetry, but in this case, to have a symmetry we must translate
both particles so that the distance between them is unchanged.

For  the  more  complicated  case  of  Eq.  (3),  where  the
potential  depends  on  a q1 + b q2,  the  symmetry  is  less  obvious.

Here is the transformation:
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We  say  that  the  Lagrangian  is  symmetric  with  respect  to  the
transformation in Equations (6). Again this is a case of translation
symmetry, but in this case, to have a symmetry we must translate
both particles so that the distance between them is unchanged.

For  the  more  complicated  case  of  Eq.  (3),  where  the
potential  depends  on  a q1 + b q2,  the  symmetry  is  less  obvious.

Here is the transformation:

(7)
q1 ® q1 + b ∆

q2 ® q2 - a ∆.

Exercise 3:  Show that  the combination  a q1 + b q2,  along

with the Lagrangian, is invariant under Equations (7).

If  the  potential  is  a  function  of  a  more  complicated
combination,  it  is  not  always clear  that  there  will  be a symmetry.
To  illustrate  a  more  complex  symmetry,  let’s  revert  to  Cartesian
coordinates for a particle moving on the x, y  plane. Let’s say this

particle  is  under  the influence of  a potential  energy that  depends
only on the distance from the origin:

(8)L =
m

2
Jx× 2

+ y
× 2N - V Ix2 + y2M.

It’s  pretty  obvious  that  Eq. (8)  has  a symmetry.  Imagine rotating
the configuration about the origin by an angle Θ (see Figure 2).

r

Θ

Figure 2: Rotation by Θ.

Since  the  potential  is  a  function  only  of  the  distance  from  the
origin, it doesn’t change if the system is rotated through an angle.
Moreover, the kinetic energy is also unchanged by a rotation. The
question  is  how  we  express  such  a  change.  The  answer  is
obvious: Just rotate coordinates
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Since  the  potential  is  a  function  only  of  the  distance  from  the
origin, it doesn’t change if the system is rotated through an angle.
Moreover, the kinetic energy is also unchanged by a rotation. The
question  is  how  we  express  such  a  change.  The  answer  is
obvious: Just rotate coordinates

(9)
x ® x cos Θ + y sin Θ

y ® -x sin Θ + y cos Θ.

where Θ is any angle.
Now  we  come  to  an  essential  point  about  the

transformations  of  translation  and rotation.  You can do  them in
small  steps—infinitesimal  steps.  For  example,  instead  of  moving
a particle from x  to x + 1, you can move it from x  to x + ∆. Now
I am using ∆ to denote an infinitesimal.  In fact, you can build up
the original displacement x ® x + 1 by many tiny steps of size ∆.
The  same  is  true  for  rotations:  You  can  rotate  through  an
infinitesimal  angle  ∆  and,  by  repeating  the  process,  eventually
build  up  a  finite  rotation.  Transformations  like  this  are  called
continuous:  They  depend  on  a  continuous  parameter  (the  angle  of
rotation),  and,  moreover,  you  can  make  the  parameter
infinitesimal.  This  will  prove to be a good thing,  because we can
explore  all  the  consequences  of  continuous  symmetries  by
restricting our attention to the infinitesimal case.

Since  finite  transformations  can  be  compounded  out  of
infinitesimal ones, in studying symmetries it’s enough to consider
transformations  with  very  small  changes  in  the  coordinates,  the
so-called infinitesimal transformations. So let’s consider what happens
to Equations  (9)  when the angle Θ  is  replaced by an infinitesimal
angle ∆. To first order in ∆,

cos ∆ = 1
sin ∆ = ∆.

(Recall  that  for  small  angles,  sin ∆ = ∆  and  cos ∆ = 1 -
1
2

∆2,  so

the first-order shift in the cosine vanishes and the first-order shift
in sine is ∆.)

Then the rotation represented by Equations (9) simplifies
to
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(Recall  that  for  small  angles,  sin ∆ = ∆  and  cos ∆ = 1 -
1
2

∆2,  so

the first-order shift in the cosine vanishes and the first-order shift
in sine is ∆.)

Then the rotation represented by Equations (9) simplifies
to

(10)
x ® x + y ∆

y ® y - x ∆.

You  can  also  see  that  the  velocity  components  change.  Just
differentiate Equations (10) with respect to time:

(11)
x
×

® x
×

+ y
×

∆

y
×

® y
×

- x
×

∆.

Another  way  to  express  the  effect  of  the  infinitesimal
transformation  is  to  concentrate  on  the  changes  in  the
coordinates and write

(12)
∆ x = y ∆

∆ y = -x ∆.

Now  it’s  a  simple  calculus  exercise  to  show  that  the  Lagrangian
does not change to first order in ∆.

Exercise 4: Show this to be true.

One  thing  worth  noting  is  that  if  the  potential  is  not  a
function  of  distance  from  the  origin,  then  the  Lagrangian  is  not
invariant  with  respect  to  the  infinitesimal  rotations.  This  very
important  point  should  be  checked  by  examining  some  explicit
.

examples. A simple example is a potential that depends only on x
and not on y.
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examples. A simple example is a potential that depends only on x
and not on y.

More General Symmetries

Before  we  get  to  the  connection  between  symmetries  and
conservation  laws,  let’s  generalize  our  notion  of  symmetry.  
Suppose  the  coordinates  of  an  abstract  dynamical  system  are  qi .

The  general  idea  of  an  infinitesimal  transformation  is  that  it  is  a
small shift of the coordinates, that may itself depend on the value
of  the coordinates.  The shift  is  parameterized by an infinitesimal
parameter ∆, and it has the form

(13)∆ qi = fiHqL ∆.

In other words, each coordinate shifts by an amount proportional
to ∆,  but  the proportionality  factor  depends on where you are in
configuration space. In the example of Equations (6) the value of
f1  and of  f2  are  both  1.  In  the  example  of  Equations  (7)  the  f -

functions  are  f1 = a  and  f2 = -b.  But  in  the  more  complicated

example  of  the  rotations  of  Equations  (12),  the  f ’s  are  not

constant:

fx = y
f y = -x.

If  we  want  to  know  the  change  in  velocities—in  order,  for
example,  to  compute  the  change  in  the  Lagrangian—we  need
only to differentiate Eq. (13). A little calculus exercise gives

(14)∆ q
×

i =
d

d t
H∆ qiL.
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For example, from Equations (12),

(15)
∆ x

×
= y

×
∆

∆ y
×

= -x
×

∆.

Now  we  can  re-state  the  meaning  of  a  symmetry  for  the
infinitesimal  case.  A  continuous  symmetry  is  an  infinitesimal
transformation  of  the  coordinates  for  which  the  change  in  the
Lagrangian  is  zero.  It  is  particularly  easy  to  check  whether  the
Lagrangian  is  invariant  under  a  continuous  symmetry:  All  you
have  to  do  is  to  check  whether  the  first  order  variation  of  the
Lagrangian is zero. If it is, then you have a symmetry.

Now let’s see what the consequences of a symmetry are.

The Consequences of Symmetry

Let’s  calculate  how  much  LIq, q
× M  changes  when  we  do  a

transformation that shifts qi  by the amount in Eq. (13) and, at the

same time, shifts q
×

i  by the amount in Eq. (14). All we have to do

is  compute  the  change  due  to  varying  the  q
×
’s  and  add  it  to  the

change due to varying the q’s:

(16)∆ L = â
i

¶ L

¶ q
×

i

∆ q
×

i +
¶ L

¶ qi
∆ qi .

Now we do a bit of magic. Watch it carefully. First, we remember

that  ¶ L

¶ q
×
i

 is  the  momentum conjugate  to  qi ,  which  we denote  pi .

Thus the first term in Eq. (16) is Úi pi ∆ q
×

i . Hold on to that while

.

we  study  the  second  term,  ¶ L
¶ qi

∆ qi .  To  evaluate  terms  of  this

type,  we  assume  the  system  is  evolving  along  a  trajectory  that
satisfies the Euler-Lagrange equations
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¶ qi

∆ qi .  To  evaluate  terms  of  this

type,  we  assume  the  system  is  evolving  along  a  trajectory  that
satisfies the Euler-Lagrange equations

¶ L

¶ qi
=

d pi

d t
.

Combining the terms, here is what we get for the variation of the
Lagrangian:

∆ L = â
i

J pi ∆ q
×

i + p
×

i ∆ qiN.

The final piece of magic is to use the product rule for derivatives:

d HF GL
d t

= F G
×

+ F
×

G.

Thus we get the result

∆ L =
d

d t
â

i

pi ∆ qi .

What  does  all  of  this  have  to  do  with  symmetry  and
conservation? First of all, by definition, symmetry means that the
variation of  the Lagrangian is  zero.  So if  Eq.  (13)  is  a  symmetry,
then ∆ L = 0 and

d

d t
â

i

pi ∆ qi = 0.

But  now  we  plug  in  the  form  of  the  symmetry  operation,  Eq.
(13), and get
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(17)
d

d t
â

i

pi fiHqL = 0.

That’s it: The conservation law is proved. What Eq. (17) states is
that a certain quantity,

(18)Q = â
i

pi fiHqL,

does  not  change  with  time.  In  other  words,  it  is  conserved.  The
argument is both abstract and powerful. It did not depend on the
details of the system, but only on the general idea of a symmetry.
Now  let’s  turn  back  to  some  particular  examples  in  light  of  the
general theory.

Back to Examples

Let’s  apply  Eq.  (18)  to  the  examples  we  studied  earlier.  In  the
first  example,  Eq.  (1),  the  variation  of  the  coordinates  in
Equations  (12)  defines  both  f1  and  f2  to  be  exactly  1.  Plugging

f1 = f2 = 1  into  Eq.  (18)  gives  exactly  what  we  found  earlier:

H p1 + p2L  is  conserved.  But  now  we  can  say  a  far  more  general

thing:  For  any  system  of  particles,  if  the  Lagrangian  is  invariant  under
simultaneous  translation  of  the  positions  of  all  particles,  then  momentum
is  conserved.  In  fact,  this  can  be  applied  separately  to  each  spatial
component  of  momentum.  If  L  is  invariant  under  translations
along  the  x  axis,  then  the  total  x  component  of  momentum  is
conserved.  Thus  we  see  that  Newton’s  third  law—action  equals
reaction—is the consequence of  a deep fact  about space:  Nothing
in the laws of physics changes if everything is simultaneously shifted in space.
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Next  let’s  look  at  the  second  example,  in  which  the
variations  of  Equations  (12)  imply  f1 = b, f2 = -a.  Again,

plugging  this  result  into  Eq.  (18),  we  find  that  the  conserved
quantity is b p1 + a p2.

The  last  example—rotation—is  more  interesting.  It
involves  a  new  conservation  law  that  we  haven’t  met  yet.  From
Eq.  (14)  we  obtain  fx = y, f y = -x.  This  time  the  conserved

quantity involves both coordinates and momenta. It is called l , or
angular momentum. From Eq. (18) we get

l = y px - x p y .

Again,  as  in  the  case  of  translations,  there  is  a  deeper  thing
involved than just the angular momentum of a single particle: 

For  any  system  of  particles,  if  the  Lagrangian  is  invariant  under
simultaneous  rotation  of  the  position  of  all  particles,  about  the  origin,  then
angular momentum is conserved.

Exercise  5:  Determine  the  equation  of  motion  for  a
simple pendulum of length l  swinging through an arc in
the x, y plane from an initial angle of Θ.

So  far,  our  examples  have  been  very  trivial.  The
Lagrangian  formulation  is  beautiful,  elegant,  blah  blah,  but  is  it
really  good  for  solving  hard  problems?  Couldn’t  you  just  use
F = m a?

Try  it.  Here  is  an  example:  the  double  pendulum.  A
pendulum swings  in  the  x, y  plane  supported  at  the  origin.  The

rod of the pendulum is massless, and the bob (weight at the end)
is M .  To make it  simple,  let the rod be 1 meter in length and let
the  bob  be  1  kilogram  in  mass.  Next,  take  another  identical
pendulum, but suspend it from the bob of the first pendulum, as
shown  in  Figure  3.  We  can  study  two  cases:  with  and  without  a
gravitational field.
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M
r

r
M

Figure 3: The double pendulum.

Our  goal  will  not  be  to  solve  the  equations  of  motion.
That  we  can  always  do,  even  if  we  have  to  put  them  on  a
computer  and  do  it  numerically.  The  goal  is  to  find  those
equations.  It’s  a  tricky  problem  if  you  try  to  do  it  by  F = M a.
Among  other  things,  you  have  to  worry  about  the  forces
transmitted  through  the  rod.  The  Lagrangian  method  is  much
easier. There is a more or less mechanical procedure for doing it.
The steps are the following:

1.   Choose  some  coordinates  that  uniquely  specify  the
configuration  of  the  components.  You  can  choose  them
however  you  like—just  make  sure  that  you  have  just
enough  to  determine  the  configuration—and  keep  them
as simple as possible.

In  the  double  pendulum  example,  you  need  two
coordinates.  I  will  choose the first  one to be the angle of
the first pendulum from the vertical. Call it Θ. Next, I have
a  choice.  Should  I  choose  the  second  angle  (the  angle  of
the second rod) also to be measured from the vertical,  or
should  I  measure  it  relative  to  the  angle  of  the  first  rod?
The  answer  is  that  it  does  not  matter.  One  choice  may
make the equations a little simpler,  but either will  get you         
.
to  the  answer.  I  will  choose  the  angle  Α  to  be  measured
relative to the first rod rather than to the vertical.
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to  the  answer.  I  will  choose  the  angle  Α  to  be  measured
relative to the first rod rather than to the vertical.

2.   Work  out  the  total  kinetic  energy.  In  this  case  it  is  the
kinetic energy of the two bobs.

The  easiest  way  to  do  this  is  to  refer  temporarily
to Cartesian coordinates x, y. Let x1, y1  refer to the first
bob  and  x2,  y2  to  the  second  bob.  Here  are  some
relations among the angles Θ, Α and x, y: For bob 1,

x1 = sin Θ

y1 = cos Θ

and for bob 2,

x2 = sin Θ + sin HΑ + ΘL
y2 = cos Θ + cos HΑ + ΘL.

Now,  by  differentiating  with  respect  to  time,  you  can
compute  the  Cartesian  velocity  components  in  terms  of
the angles and their time derivatives.

Finally,  work  out  the  kinetic  energy  m
2

Jx× 2
+ y

× 2N
for  each  bob  and  add  them.  It  should  take  a  couple  of
minutes.  Remember  that  we have  chosen  the  masses  and
rod lengths to be 1.

Here  is  the  result:  The  kinetic  energy  of  the  first
bob is:

T1 =
Θ
× 2

2

and the kinetic energy of the second bob is

T2 =

Θ
× 2

+ KΘ
×

+ Α
× O2

2
+ Θ

× K Θ
×

+ Α
× O cos Α.

If  there  is  no  gravitational  field,  then  the  kinetic
energy is the Lagrangian:
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If  there  is  no  gravitational  field,  then  the  kinetic
energy is the Lagrangian:

L = T1 + T2 =
Θ
× 2

2
+

Θ
× 2

+ KΘ
×

+ Α
× O2

2
+ Θ

× K Θ
×

+ Α
× O cos Α.

If  there  is  gravity,  then  we  have  to  calculate  the
gravitational  potential  energy.  That’s  easy:  For  each  bob
we add its altitude times m g. This gives a potential energy

V HΘ, ΑL = - g @2 cos Θ + cos HΘ - ΑLD.
3.   Work  out  the  Euler-Lagrange  equations  for  each  degree

of freedom.
4.   For  later  purposes,  work  out  the  conjugate  momenta  for

each coordinate, pi =
¶L

¶q
×
i
.

Exercise 6: Work out the Euler-Lagrange equations for Θ
and Α.

There is more that you may want to do. In particular, you
may  want  to  identify  the  conserved  quantities.  Energy  is  usually
the  first  one.  The  total  energy  is  just  T + V .  But  there  may  be
more.  Finding  symmetries  is  not  always  a  mechanical  procedure;
you  may  have  to  do  some  pattern  recognition.  In  the  double
pendulum case without any gravity, there is another conservation
law.  It  follows  from  rotation  symmetry.  Without  a  gravitational
field,  if  you  rotate  the  whole  system  about  the  origin,  nothing
changes. This implies conservation of angular momentum, but to
find the form of the angular momentum, you have to go through
the  procedure  that  we  derived.  That  involves  knowing  the
conjugate momenta.

Exercise  7:  Work  out  the  form  of  the  angular
momentum  for  the  double  pendulum,  and  prove  that  it
is conserved when there is no gravitational field.
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Exercise  7:  Work  out  the  form  of  the  angular
momentum  for  the  double  pendulum,  and  prove  that  it
is conserved when there is no gravitational field.
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Lecture 8: Hamiltonian Mechanics and 
Time-Translation Invariance

Doc was sitting at the bar drinking his usual—a beer milk shake—
and reading the paper, when Lenny and George walked in. “What
are you reading about, Doc?” 

Doc  looked  up  at  Lenny  over  his  glasses.  “I  see  where
this guy Einstein says,  ‘Insanity is doing the same thing over and
over  and  expecting  different  results.’  What  do  you  think  about
that?”

Lenny thought for a minute. “You mean like every time I
eat here I order chili, and then I get a stomachache?”

Doc  chuckled,  “Yeah,  that’s  the  idea.  I  see  you’re
beginning to understand Einstein.”

Time-Translation Symmetry

You  may  wonder  what  happened  to  energy  conservation  and
whether  it  fits  the  pattern  relating  symmetries  to  conservation
laws.  Yes,  it  does,  but  in  a  slightly  different  way  than  the
examples  in  Lecture  7.  In  all  of  those  examples  the  symmetry
involved shifting  the coordinates  qi .  For  instance,  a translation is

a  symmetry  that  simultaneously  shifts  the  Cartesian  coordinates
of  all  the  particles  in  a  system  by  the  same  amount.  The
symmetry connected with energy conservation involves a shift  of
time.

Imagine  an  experiment  involving  a  closed  system  far
from any perturbing influences. The experiment begins at time t0
with a certain initial condition, proceeds for a definite period, and
results  in  some  outcome.  Next,  the  experiment  is  repeated  in
exactly the same way but at a later time. The initial conditions are
the same as before, and so is the duration of the experiment; the
only  difference  is  the  starting  time,  which  is  pushed  forward  to
t0 + D t .  You  might  expect  that  the  outcome  will  be  exactly  the
same, and that the shift D t  would make no difference. Whenever
this is true, the system is said to be invariant under time translation.

Time-translation  invariance  does  not  always  apply.  For
example,  we  live  in  an  expanding  universe.  The  effect  of  the
expansion  on  ordinary  laboratory  experiments  is  usually
negligible,  but  it’s  the  principle  that  counts.  At  some  level  of
accuracy,  an  experiment  that  begins  later  will  have  a  slightly
different outcome than one which begins earlier.

Here  is  a  more  down-to-earth  example.  Suppose  the
system of interest is a charged particle moving in a magnetic field.
If  the  magnetic  field  is  constant  then  the  motion  of  the  particle
will be time-translation invariant. But if the current that generates
the field is being slowly increased, then the same initial condition
for  the  particle—but  starting  at  different  times—will  result  in  a
different  outcome.  The  description  of  the  particle  will  not  be
time-translation invariant.

How  is  time-translation  symmetry,  or  the  lack  of  it,
reflected  in  the  Lagrangian  formulation  of  mechanics?  The
answer  is  simple.  In  those  cases  where  there  is  such  symmetry,
the  Lagrangian  has  no  explicit  dependence  on  time.  This  is  a
subtle point: The value of the Lagrangian may vary with time, but
only  because  the  coordinates  and  velocities  vary.  Explicit  time
dependence  means  that  the  form  of  the  Lagrangian  depends  on
time. For example, take the harmonic oscillator with Lagrangian
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L =
1

2
Jm x

× 2
- k x2N.

If  m  and  k  are  time-independent  then  this  Lagrangian  is  time-
translation invariant.

But  one  can  easily  imagine  that  the  spring  constant  k
might,  for  some  reason,  change  with  time.  For  example,  if  the
experiment  took  place  in  a  changing  magnetic  field,  this  could
have  a  subtle  effect  on  the  atoms  of  the  spring,  which  in  turn
could cause k to vary. In that case, we would have to write

L =
1

2
Bm x

× 2
- kHtL x2F.

This  is  what  we  mean  by  an  explicit  time  dependence.  More
generally, we can write

(1)L = LIqi , q
×

i , tM,
where  the  t  dependence  is  due  to  the  time  variation  of  all  the
parameters controlling the behavior of the system.

With  this  idea  in  hand,  we  can  now  give  a  very  succinct
mathematical  criterion  for  time-translation  symmetry:  A  system  is
time-translation  invariant  if  there  is  no  explicit  time  dependence  in  its
Lagrangian.

Energy Conservation

Let’s  consider  how  the  actual  value  of  the  Lagrangian,  Eq.  (1),
changes  as  a  system  evolves.  There  are  three  sources  of  time
dependence  of  L.  The  first  and  second  are  due  to  the  time

dependence of the coordinates q and the velocities q
×
. If that were

all, we would write
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dependence of the coordinates q and the velocities q
×
. If that were

all, we would write

d L

d t
= â

i

¶L

¶qi
q
×

i +
¶L

¶q
×

i

q
××

i .

But  if  the  Lagrangian  has  explicit  time  dependence,  then
there is another term:

(2)
d L

d t
= â

i

¶L

¶qi
q
×

i +
¶L

¶q
×

i

q
××

i +
¶L

¶ t
.

Let’s  examine  the  various  terms  in  Eq.  (2)  using  the  Euler-

Lagrange equations of motion.  The first  type of term, ¶L
¶qi

q
×

i ,  can

be written

¶L

¶qi
q
×

i = p
×

i q
×

i .

The second type of term, ¶L

¶q
×
i

q
××

i , takes the form

¶L

¶q
×

i

q
××

i = pi q
××

i .

If we combine everything, we get

d L

d t
= â

i

J p
×

i q
×

i + pi q
××

iN +
¶L

¶ t
.

The first two terms can be simplified. We use the identity

â
i

J p
×

i q
×

i + pi q
××

iN =
d

d t
â

i

I pi q
×

iM
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to get

(3)
d L

d t
=

d

d t
â

i

I pi q
×

iM +
¶L

¶ t
.

Notice that even if there is no explicit time dependence in L, the
Lagrangian  will  nevertheless  depend  on  time  through  the  first

term  Úi
d

d t
I pi q

×

iM.  The  upshot  is  that  there  is  no  such  thing  as

conservation of the Lagrangian.
Inspection of Eq. (3) reveals something interesting.  If we

define a new quantity H by

(4)â
i

I pi q
×

iM - L = H

then Eq. (3) has a very simple form:

(5)
d H

d t
= -

¶L

¶ t
.

The steps leading to Eq. (5) may seem a bit  complicated,
but the result is very simple. The new quantity H  varies with time
only  if  the  Lagrangian  has  an  explicit  time  dependence.  An  even
more  interesting  way  to  say  it  is  if  a  system  is  time-translation
invariant, then the quantity H is conserved.

The  quantity  H  is  called  the  Hamiltonian,  and,  as  you
might  expect,  it  is  important  because (among other  reasons)  it  is
the  energy  of  a  system.  But  it  is  more  than  important;  it  is  the
central  element  in  an  entirely  new  formulation  of  mechanics
called  the  Hamiltonian  formulation.  But  for  now,  let’s  consider  its
meaning  by  returning  to  a  simple  example,  the  motion  of  a
particle in a potential. The Lagrangian is
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(6)L =
m

2
x
× 2

- V HxL,

and the canonical momentum is just the usual momentum

(7)p = m x
×
.

Let’s plug Eq. (6) and Eq. (7) into Eq. (4), the definition of H :

H = Im x
× M x

×
-

m

2
x
× 2

+ V HxL

= m x
× 2

-
m

2
x
× 2

+ V HxL

=
m

2
x
× 2

+ V HxL.

Notice  what  happens:  Two  terms  proportional  to  m x
× 2

 combine
to  give  the  usual  kinetic  energy,  and  the  potential  term  becomes
+V HxL.  In  other  words,  H  just  becomes  the  usual  total  energy,
kinetic plus potential.

This  is  the  general  pattern  that  you  can  check  for  any
number  of  particles.  If  the  Lagrangian  is  kinetic  energy  minus
potential energy, then

H = p q
×

- T + V .
= T + V .

There  are  systems  for  which the  Lagrangian  has  a  more  intricate
form than just T - V . For some of those cases, it is not possible
to  identify  a  clear  separation  into  kinetic  and  potential  energy.
Nonetheless,  the  rule  for  constructing  the  Hamiltonian  is  the
same. The general definition of energy for these systems is
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Energy equals Hamiltonian.

Moreover,  if  there  is  no  explicit  time  dependence  in  the
Lagrangian, then the energy H is conserved.

If,  however,  the  Lagrangian  is  explicitly  time-dependent,
then Eq. (5) implies that the Hamiltonian is not conserved. What
happened to the energy in that case? To understand what is going
on,  let's  consider  an  example.  Suppose  that  a  charged  particle,
with  unit  electric  charge,  is  moving  between  the  plates  of  a
capacitor.  The  capacitor  has  a  uniform electric  field  Ε  due to  the
charges on the plates. (The reason we are using Ε for electric field,
instead of the more conventional E, is to avoid confusing it with
energy.)  You  don’t  have  to  know  anything  about  electricity.  All
you need to know is  that  the capacitor creates  a potential  energy
equal to Ε x. The Lagrangian is

L =
m

2
x
× 2

- Ε x.

As  long  as  the  field  is  constant,  the  energy  is  conserved.  But
suppose  the  capacitor  is  being  charged  up  so  that  Ε  is  also
ramping up. Then the Lagrangian has an explicit time dependence:

L =
m

2
x
× 2

- ΕHtL x.

Now  the  energy  of  the  particle  is  not  conserved.  Depending  on
the  momentary  location  x  of  the  particle,  the  energy  varies
according to

d H

d t
=

d Ε

d t
x.

Where  did  that  energy  come from?  The  answer  is  that  it
came from the battery that was charging the capacitor. I won’t go
into  details,  but  the  point  is  that  when we defined the  system to
consist  of  just  the  particle,  we narrowed  our  focus  to  just  a  part
of  a  bigger  system  that  includes  the  capacitor  and  the  battery.
These  additional  items  are  also  made  of  particles  and  therefore
have energy.

Consider  the  entire  experiment,  including  the  battery,
capacitor, and particle. The experiment begins with an uncharged
capacitor and a particle at rest, somewhere between the plates. At
some  moment  we  close  a  circuit,  and  current  flows  into  the
capacitor. The particle experiences a time-dependent field, and, at
the  end  of  the  experiment,  the  capacitor  is  charged  and  the
particle is moving.

What  if  we  did  the  entire  experiment  an  hour  later?  The
outcome,  of  course,  would  be  the  same.  In  other  words,  the
entire  closed  system  is  time-translation  invariant,  so  the  entire
energy of all items is conserved. If we treated the entire collection
as a single system,  it  would be time-translation  invariant,  and the
total energy would be conserved.

Nevertheless,  it  is  often  useful  to  divide  a  system  into
parts and to focus on one part. In that case, the energy of part of
the  system  will  not  be  conserved  if  the  other  parts  are  varying
with time.
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with time.

Phase Space and Hamilton’s Equations

The Hamiltonian is important because (among other reasons) it is
the  energy.  But  its  significance  is  far  deeper:  It  is  the  basis  for  a
complete  revamping  of  classical  mechanics,  and  it  is  even  more
important in quantum mechanics.

In  the  Lagrangian—or  action—formulation  of
mechanics, the focus is on the trajectory of a system through the
configuration  space.  The  trajectory  is  described  in  terms  of  the
coordinates  qHtL.  The  equations  are  second-order  differential

equations, so it is not enough to know the initial coordinates;  we
also have to know the initial velocities.

In  the  Hamiltonian  formulation,  the  focus  is  on  phase
space. Phase space is the space of both the coordinates qi  and the

conjugate momenta pi .  In fact,  the q’s  and p’s  are treated on the

same  footing,  the  motion  of  a  system  being  described  by  a
trajectory  through  the  phase  space.  Mathematically,  the
description  is  through  a  set  of  functions  qiHtL, piHtL.  Notice  that

the  number  of  dimensions  of  phase  space  is  twice  that  of
configuration space.

What do we gain by doubling the number of dimensions?
The  answer  is  that  the  equations  of  motion  become  first-order
differential  equations.  In less technical terms,  this  means that the
future is laid out if we know only the initial point in phase space. 

The  first  step  in  constructing  the  Hamiltonian

formulation is to get rid of the q
×
's and replace them with the p's.

The  goal  is  to  express  the  Hamiltonian  as  a  function  of  q's  and

p's.  For particles in ordinary Cartesian coordinates,  the momenta

and velocities are almost the same thing, differing only by a factor
of the mass. As usual, the particle on a line is a good illustration.

We start with the two equations
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(8)

p = m x
×

H =
m x

× 2

2
+ V HxL.

When  we  replace  the  velocity  with  p � m  the  Hamiltonian

becomes a function of p and x:
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H =
p2

2 m
+ V HxL.

One  last  point  before  we  write  the  equations  of  motion  in
Hamiltonian  form:  The  partial  derivative  of  H  with  respect  to  x

is  just  d V
d x

,  or  minus  the  force.  Thus  the  equation  of  motion

HF = m aL takes the form

(9)p
×

= -
¶ H

¶ x
.

We  noted  earlier  that  in  the  Hamiltonian  formulation,  the
coordinates  and  momenta  are  on  the  same  footing.  From  that
you might guess that there is another equation similar  to Eq. (9),
with p and x  interchanged. That is almost true, but not quite. The

correct equation is

(10)x
×

=
¶ H

¶ p
,

with a plus sign instead of a minus sign.
To  see  why  Eq.  (10)  is  true,  just  differentiate  the

expression  for  H  with  respect  to  p.  From  the  second  of

Equations (8) we get

¶H

¶ p
=

p

m
,

which from the first equation is just x
×
.

So now we see a very simple symmetric packaging of the
equations.  We have two equations  of  motion instead of  one,  but
each is of first-order:
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(11)

p
×

= -
¶ H

¶ x

x
×

=
¶ H

¶ p
.

These  are Hamilton’s  equations  for  a particle  on a line.  Soon we
will derive the general form for any system, but for now I will tell
you what  it  is.  We start  with  a  Hamiltonian  that  is  a  function  of
all the q’s and p’s:

H = HHqi , piL.
We can use this to generalize Equations (11),

(12)

p
×

i = -
¶ H

¶ qi

q
×

i =
¶ H

¶ pi
.

So we see that for each direction in phase space, there is a single
first-order equation.

Let’s  stop to consider  how these equations  are related to
the  very  first  chapter  of  this  book,  in  which  we  described  how
deterministic  laws  of  physics  predict  the  future.  What  Equations
(12) say is this:

If at any time you know the exact values of all the coordinates and momenta,
and  you  know  the  form  of  the  Hamiltonian,  Hamilton’s  equations
will  tell  you  the  corresponding  quantities  an  infinitesimal  time  later.  By  a
process  of  successive  updating,  you  can  determine  a  trajectory  through  phase
space.
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The Harmonic Oscillator Hamiltonian

The  harmonic  oscillator  is  by  far  the  most  important  simple
system  in  physics.  It  describes  all  sorts  of  oscillations  in  which
some degree of freedom is displaced and then oscillates about an
equilibrium position.  To see why it is so important,  let’s suppose
a  degree  of  freedom  q  has  a  potential  energy  V HqL  that  has  a

minimum.  The  minimum  describes  a  stable  equilibrium,  and
when the degree of freedom is displaced, it will tend to return to
the  equilibrium  position.  Without  any  real  loss  of  generality,  we
can locate the minimum at q = 0. The generic function that has a

minimum  at  this  point  can  be  approximated  by  the  quadratic
function

(13)V HqL = V H0L + c q2.

where  V H0L  and  c  are  constants.  The  reason  why  there  is  no

linear  term  proportional  to  q  is  that  the  derivative  d V
d q

 must  be

zero  at  the  minimum.  We  can  also  drop  the  term  V H0L  since
adding a constant to the potential energy has no effect.

The  form  of  Eq.  (13)  is  not  very  general;  V  could
contain terms of all orders—for example, q3  or q4. But as long as

the  system  deviates  from  q = 0  by  only  a  small  amount,  these

higher-order  terms  will  be  negligible  compared  to  the  quadratic
term.  This  reasoning  applies  to  all  sorts  of  systems:  springs,
pendulums,  oscillating  sound  waves,  electromagnetic  waves,  and
on and on.

I will write the Lagrangian in what may seem like a special
form involving a single constant called Ω:
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(14)L =
1

2 Ω
q
× 2

-
Ω

2
q2.

Exercise  1:  Start  with  the  Lagrangian  m x
× 2

2
-

k

2
x2  and

show  that  if  you  make  the  change  in  variables

q = Hk mL1�4 x,  the  Lagrangian  has  the  form  of  Eq.  (14).

What is the connection among k, m, and Ω?

Exercise  2:  Starting  with  Eq.  (14),  calculate  the
Hamiltonian in terms of p and q.

The  Hamiltonian  corresponding  to  Eq.  (14)  is  very
simple:

(15)H =
Ω

2
I p2 + q2M.

It was in order to get H  into such a simple form that we changed
variables from x to q in Exercise 1.

One  of  the  hallmarks  of  the  Hamiltonian  formulation  is
how  symmetric  it  is  between  the  q’s  and  p’s.  In  the  case  of  the

harmonic  oscillator,  it  is  almost  completely  symmetric.  The  only
asymmetry  is  a  minus  sign  in  the  first  of  Equations  (12).  For  a
single  degree  of  freedom,  Hamilton’s  equations  are  Equations
(11).  If  we  plug  our  Hamiltonian,  Eq.  (15),  into  Equations  (12),
we get,
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(16)
p
×

i = -Ω q

q
×

i = Ω p.

How do these two equations  compare with Lagrange’s  equations
that we would derive from Eq. (14)? First of all, there is only one
Lagrangian equation:

(17)q
××

= -Ω2 q.

Second,  this  equation  is  second-order,  meaning  that  it  involves
second  time-derivatives.  By  contrast,  the  Hamiltonian  equations
are  each  first-order.  This  somehow  means  that  two  first-order
equations  are  equivalent  to  one  second-order  equation.  We  can
see  this  by  differentiating  the  second  equation  in  Equations  (16)
with respect to time,

q
××

= Ω p
×
,

and then using  the first  equation in Equations  (16).  This  enables

us  to  replace  p
×

 with  -Ω q,  which  gives  us  Eq.  (17):  The  Euler-

Lagrange equation of motion.
Is  one  formulation  better  than  the  other?  Did  Lagrange

have  the  final  word  or  did  Hamilton?  You  can  decide  for
yourself, but wait a while before you do. We still have a couple of
courses  on  relativity  and  quantum  mechanics  before  the  real
meanings of the Lagrangian and Hamiltonian become completely
clear.

Let’s  return  to  Equations  (16).  We  usually  “think”  in
configuration  space.  The  harmonic  oscillator  is  a  system  that
moves  back  and  forth  along  a  single  axis.  But  it  is  also  an
excellent  starting  point  for  getting  used  to  “thinking”  in  phase
space.  Phase  space  (for  the  oscillator  )  is  two-dimensional.  It  is
easy to see that the trajectories of the oscillator in phase space are
concentric  circles  about  the  origin.  The  argument  is  very  simple.
Go  back  to  the  expression  for  the  Hamiltonian,  Eq.  (15).  The
Hamiltonian,  being  the  energy,  is  conserved.  It  follows  that
q2 + p2  is  constant  with  time.  In  other  words,  the  distance  from

the origin of phase space is constant,  and the phase point moves
on  a  circle  of  fixed  radius.  In  fact  Eq.  (16)  is  the  equation  for  a
point  moving  with  constant  angular  velocity  Ω  about  the  origin.
Especially interesting is the fact that the angular velocity in phase
space is the same for all orbits,  independent of the energy of the
oscillator.  As  the  phase  point  circles  the  origin,  you  can  project
the  motion  onto  the  horizontal  q  axis,  as  shown  in  Figure  1.  It

moves  back  and  forth  in  an  oscillatory  motion,  exactly  as
expected. However, the two-dimensional circular motion through
phase  space is  a  more  comprehensive  description  of  the motion.
By projecting onto the vertical p axis, we see that the momentum

also oscillates.
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q

p

Figure 1: The harmonic oscillator in phase space.

The  harmonic  oscillator  is  especially  simple.  In  general,
the motion of a system through phase space is more complicated
and  less  symmetric.  But  the  fact  that  the  phase  point  stays  on  a
contour  of  constant  energy  is  universal.  Later  we  will  discover
more general properties of motion in phase space.
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Derivation of Hamilton’s Equations

Let’s  complete  a  piece  of  business  that  we  left  unfinished:  the
general  derivation  of  Hamilton’s  equations.  The  Lagrangian  is
some general function of the coordinates and velocities,

L = LI8q<, 9q× =M,
and the Hamiltonian is

H = â
i

I pi q
×

iM - L.

The change in the Hamiltonian is

∆ H = â
i

I pi ∆ q
×

i + q
×

i ∆ piM - ∆ L

= â
i

pi ∆ q
×

i + q
×

i ∆ pi -
¶L

¶qi
∆ qi -

¶L

¶q
×

i

∆ q
×

i .

Now if  we use the definition of pi ,  namely pi =
¶L

¶q
×
i
,  we see that

the first and last terms exactly cancel, leaving

∆ H = â
i

q
×

i ∆ pi -
¶L

¶qi
∆ qi .

Let’s  compare  this  with  the  general  rule  for  a  small
change in a function of several variables:

∆ HH8q<, 8 p<L = â
i

¶H

¶ pi
∆ pi +

¶H

¶qi
∆ qi .
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By matching the terms proportional to ∆ qi  and ∆ pi , we arrive at

(18)

¶H

¶ pi
= q

×

i

¶H

¶qi
= -

¶L

¶q
×

i

.

There  is  only  one  last  step,  and  that  is  to  write  Lagrange’s
equations in the form

¶L

¶q
×

i

= p
×

i .

Inserting  this  in the second of Equations (18)  we get Hamilton’s
equations,

(19)

¶H

¶ pi
= q

×

i

¶H

¶qi
= - p

×

i .
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Lecture 9: The Phase Space Fluid and 
the Gibbs-Liouville Theorem

Lenny  loved  watching  the  river,  especially  watching  little  bits  of
floating  debris  making  their  way  downstream.  He  tried  to  guess
how they would move between the rocks or get caught in eddys.
But  the  river  as  a  whole—the  large-scale  current,  the  volume  of
water, the shear, and the divergence and convergence of the flow
were beyond him.

The Phase Space Fluid

Focusing  on  a  particular  initial  condition  and  following  it  along
its  specific  trajectory  through phase  space are very natural  things
to do in classical mechanics. But there is also a bigger picture that
emphasizes  the  entire  collection  of  trajectories.  The  bigger
picture  involves  visualizing  all  possible  starting  points  and  all
possible  trajectories.  Instead  of  putting  your  pencil  down  at  a
point in phase space and then following a single trajectory, try to
do  something  more  ambitious.  Imagine  you  had  an  infinite
number  of  pencils  and  used  them  to  fill  phase  space  uniformly
with  dots  (by  uniformly,  I  mean  that  the  density  of  dots  in  the

q, p space is everywhere the same). Think of the dots as particles

that make up a fictitious phase-space-filling fluid.
Then  let  each  dot  move  according  to  the  Hamiltonian

equations of motion,



(1)

q
×

i =
¶ H

¶ pi

p
×

i = -
¶ H

¶ qi
,

so that the fluid endlessly flows through the phase space.
The  harmonic  oscillator  is  a  good  example  to  start  with.

In Lecture 8 we saw that each dot moves in a circular orbit  with
uniform angular velocity. (Remember,  we are talking about phase
space,  not  coordinate  space.  In  coordinate  space,  the  oscillator
moves back and forth in one dimension.) The whole fluid moves
in  a  rigid  motion,  uniformly  circulating  around  the  origin  of
phase space.

Now  let’s  return  to  the  general  case.  If  the  number  of
coordinates  is  N ,  then  the  phase  space,  and  the  fluid,  are  2N-
dimensional.  The  fluid  flows,  but  in  a  very  particular  way.  There
are features of the flow that are quite special. One of these special
features  is  that  if  a  point  starts  with  a  given  value  of  energy—a
given value of HHq, pL—then it remains with that value of energy.

The surfaces  of fixed energy (for  example, energy E)  are defined
by the equation

(2)HHq, pL = E.

For  each  value  of  E  we  have  a  single  equation  for  2N  phase-
space  variables,  thus  defining  a  surface  of  dimension  2N - 1.  In
other  words,  there  is  a  surface  for  each  value  of  E;  as  you  scan
over values of E,  those surfaces fill  up the phase space. You can
think  of  the  phase  space,  along  with  the  surfaces  defined  in  Eq.
(2)  as  a  contour  map  (see  Figure  1),  but,  instead  of  representing
altitude, the contours denote the value of the energy. If a point of
the fluid is on a particular surface, it stays on that surface forever.
That’s energy conservation.
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q

p

Figure 1: Contour plot of energy surfaces of a harmonic 
oscillator in phase space.

For  the  harmonic  oscillator,  the  phase  space  is  two-
dimensional and the energy surfaces are circles:

(3)
Ω

2
Iq2 + p2M = E.

For  a  general  mechanical  system,  the  energy  surfaces  are  far  too
complicated to visualize, but the principle is the same: The   energy
surfaces fill the phase space like layers  and the flow moves  so that the points
stay on the surface that they begin on.

A Quick Reminder

We  want  to  stop  here  and  remind  you  of  the  very  first  lecture,
where we discussed coins,  dice, and the simplest  idea of a law of
motion.  We  described  those  laws  by  a  set  of  arrows  connecting
dots that represented the states  of the system. We also explained
that  there  are  allowable  laws  and unallowable  laws,  the  allowable
laws  being  reversible.  What  is  it  that  characterizes  an  allowable
law?  The  answer  is  that  every  point  must  have  exactly  one
incoming  arrow  and  one  outgoing  arrow.  If  at  any  point  the
number  of  incoming  arrows  exceeds  the  number  of  outgoing
arrows  (such  a  situation  is  called  a  convergence),  then  the  law  is
irreversible.  The  same  is  true  if  the  number  of  outgoing  arrows
exceeds the number of incoming arrows (such a situation is called
a  divergence).  Either  a  convergence  or  divergence  of  the  arrows
violates  reversibility  and  is  forbidden.  So  far  we  have  not
returned to that line of reasoning. Now is the time.
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Flow and Divergence

Let’s  consider  some  simple  examples  of  fluid  flow  in  ordinary
space.  Forget  about  phase  space  for  the  moment,  and  just
consider  an  ordinary  fluid  moving  through  regular  three-
dimensional  space  labeled  by  axes  x, y, z.  The  flow  can  be

described by a velocity  field. The velocity field v
®Hx, y, zL is defined

by going to each point of space and specifying the velocity vector
at that point (see Figure 2). 

x

y

z

Figure 2: Velocity field.
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Figure 2: Velocity field.

Or  we  may  describe  the  velocity  field  to  be  the  components  of
the  velocity:  vxHx, y, zL,  v yHx, y, zL,  vzHx, y, zL.  The  velocity  at  a

point might also depend on time, but let’s suppose that it doesn’t.
In that case the flow is called stationary.

Now  let’s  suppose  the  fluid  is  incompressible.  This
means that a given amount of the fluid always occupies the same
volume.  It  also  means  that  the  density  of  the  fluid—the number
of  molecules  per  unit  volume—is  uniform  and  stays  that  way
forever.  By  the  way,  the  term  incompressible  also  means  in-
decompressible.  In  other  words,  the  fluid  cannot  be  stretched
out, or decompressed. Consider a small cubic box defined by

x0 < x < x0 + d x
y0 < y < y0 + d y
z0 < z < z0 + d z.

Incompressibility implies that the number of fluid points in every
such box is constant. It also means that the net flow of fluid into
the box (per unit time) must be zero. (As many points flow in as
flow  out.)  Consider  the  number  of  molecules  per  unit  time
coming  into  the  box  across  the  face  x = x0.  It  will  be
proportional to the flow velocity across that face,  vxHx0L.

If  vx  were  the  same  at  x0  and  at  x0 + d x,  then  the
flow into the box at x = x0  would be the same as the flow out of
the  box  at  x = x0 + d x.  However,  if  vx  varies  across  the  box,
then  the  two  flows  will  not  balance.  Then  the  net  flow  into  the
box across the two faces will be proportional to

-
¶vx

¶x
d x d y d z.

Exactly  the  same  reasoning  applies  to  the  faces  at  y0  and

y0 + d y, and also at z0  and z0 + d z. In fact, if you add it all up,

the net flow of molecules into the box (inflow minus outflow) is
given by
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Exactly  the  same  reasoning  applies  to  the  faces  at  y0  and

y0 + d y, and also at z0  and z0 + d z. In fact, if you add it all up,

the net flow of molecules into the box (inflow minus outflow) is
given by

-
¶vx

¶x
+

¶v y

¶ y
+

¶vz

¶z
d x d y d z.

The combination of derivatives in the parentheses has a name: It

is the divergence of the vector field v
®HtL and is denoted by

(4)Ñ × v
®

=
¶vx

¶x
+

¶v y

¶ y
+

¶vz

¶z
.

The  divergence  is  aptly  named;  it  represents  a  spreading  out  of
the  molecules,  or  an  increase  in  the  volume  occupied  by  the
molecules.  If  the  fluid  is  incompressible,  then  the  volume  must
not change, and this implies that the divergence must be zero.

One  way  to  think  about  incompressibility  is  to  imagine
that  each  of  the  molecules,  or  points,  of  the  fluid  occupies  a
volume  that  cannot  be  compromised.  They  cannot  be  squeezed
into  a  smaller  volume,  nor  can  they  disappear  or  appear  from
nowhere.  With  a  little  bit  of  thought,  you  can  see  how  similar
incompressibility  is  to  reversibility.  In  the  examples  that  we
examined  in  Lecture  1,  the  arrows  also  defined  a  kind  of  flow.
And  in  a  sense  the  flow  was  incompressible,  at  least  if  it  was
reversible.  The  obvious  question  that  this  raises  is  whether  the
flow through phase space is incompressible.  The answer is yes, if
the  system  satisfies  Hamilton’s  equations.  And  the  theorem  that
expresses the incompressibility is called Liouville’s theorem.

Liouville’s Theorem

Let’s  go  back  to  the  fluid  flow  in  phase  space  and  consider  the
components  of  the  velocity  of  the  fluid  at  every  point  of  the
phase  space.  Needless  to  say,  the  phase-space  fluid  is  not  three-
dimensional  with  coordinates  x, y, z.  Instead  it  is  a  2N-

dimensional  fluid  with  coordinates  pi , qi .   Therefore,  there  are

2N  components of the velocity field, one for each q  and one for

each p. Let’s call them vqi  and v pi  .

The  concept  of  a  divergence  in  Eq.  (4)  is  easily
generalized to any number of dimensions.  In three dimensions  it
is  the  sum  of  the  derivatives  of  the  velocity  components  in  the
respective  directions.  It’s  exactly  the  same  in  any  number  of
dimensions.  In the case of  phase space,  the divergence of  a flow
is the sum of 2N terms:
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Let’s  go  back  to  the  fluid  flow  in  phase  space  and  consider  the
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phase  space.  Needless  to  say,  the  phase-space  fluid  is  not  three-
dimensional  with  coordinates  x, y, z.  Instead  it  is  a  2N-

dimensional  fluid  with  coordinates  pi , qi .   Therefore,  there  are

2N  components of the velocity field, one for each q  and one for

each p. Let’s call them vqi  and v pi  .

The  concept  of  a  divergence  in  Eq.  (4)  is  easily
generalized to any number of dimensions.  In three dimensions  it
is  the  sum  of  the  derivatives  of  the  velocity  components  in  the
respective  directions.  It’s  exactly  the  same  in  any  number  of
dimensions.  In the case of  phase space,  the divergence of  a flow
is the sum of 2N terms:

(5)Ñ × v
®

= â
i

¶vqi

¶qi
+

¶v pi

¶ pi
.

If the fluid is incompressible, then the expression in Eq. (5) must
be  zero.  To  find  out,  we  need  to  know  the  components  of  the
velocity field—that being nothing but the velocity of a particle of
the phase space fluid.

The  flow  vector  of  a  fluid  at  a  given  point  is  identified
with  the  velocity  of  a  fictitious  particle  at  that  point.  In  other
words,

vqi = q
×

i

v pi = p
×

i .

Moreover,  q
×

i  and  p
×

i  are  exactly  the  quantities  that  Hamilton’s

equations, Equations (1), give:
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(6)

vqi =
¶H

¶ pi

v pi = -
¶H

¶qi
.

All we have to do is plug Equations (6) into Eq. (5) and see what
we get:

(7)Ñ × v
®

= â
i

¶

¶qi

¶H

¶ pi
-

¶

¶ pi

¶H

¶qi
.

Recalling  that  a  second  derivative  like  ¶

¶qi

¶H
¶ pi

 does  not  depend

on  the  order  of  differentiation,  we  see  that  the  terms  in  Eq.  (7)
exactly cancel in pairs:

Ñ × v
®

= 0.

Thus  the  phase  space  fluid  is  incompressible.  In  classical
mechanics, the incompressibility of the phase space fluid is called
Liouville’s  theorem,  even  though  it  had  very  little  to  do  with  the
French  mathematician  Joseph  Liouville.  The  great  American
physicist  Josiah  Willard  Gibbs  first  published  the  theorem  in
1903, and it is also known as the Gibbs-Liouville theorem.

We  defined  the  incompressibity  of  a  fluid  by  requiring
that the total amount of fluid that enters every small box be zero.
There  is  another  definition  that  is  exactly  equivalent.  Imagine  a
volume  of  fluid  at  a  given  time.  The  volume  of  fluid  may  have
any shape—a sphere, a cube, a blob, or whatever. Now follow all
the  points  in  that  volume  as  they  move.  After  a  time  the  fluid
blob will be at a different  place with a different  shape. But if the
fluid is incompressible, the volume of the blob will remain what it
was  at  the  beginning.  Thus  we  can  rephrase  Liouville’s  theorem:
The volume occupied by a blob of phase space fluid is conserved with time.

Let’s  take  the  example  of  the  harmonic  oscillator  in
which  the  fluid  moves  around  the  origin  in  circles.  It’s  obvious
that  a blob maintains  its  volume since all  it  does is  rigidly rotate.
In fact, the shape of the blob stays the same. But this latter fact is
special  to  the  harmonic  oscillator.  Let’s  take  another  example.
Suppose the Hamiltonian is given by
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Thus  the  phase  space  fluid  is  incompressible.  In  classical
mechanics, the incompressibility of the phase space fluid is called
Liouville’s  theorem,  even  though  it  had  very  little  to  do  with  the
French  mathematician  Joseph  Liouville.  The  great  American
physicist  Josiah  Willard  Gibbs  first  published  the  theorem  in
1903, and it is also known as the Gibbs-Liouville theorem.

We  defined  the  incompressibity  of  a  fluid  by  requiring
that the total amount of fluid that enters every small box be zero.
There  is  another  definition  that  is  exactly  equivalent.  Imagine  a
volume  of  fluid  at  a  given  time.  The  volume  of  fluid  may  have
any shape—a sphere, a cube, a blob, or whatever. Now follow all
the  points  in  that  volume  as  they  move.  After  a  time  the  fluid
blob will be at a different  place with a different  shape. But if the
fluid is incompressible, the volume of the blob will remain what it
was  at  the  beginning.  Thus  we  can  rephrase  Liouville’s  theorem:
The volume occupied by a blob of phase space fluid is conserved with time.

Let’s  take  the  example  of  the  harmonic  oscillator  in
which  the  fluid  moves  around  the  origin  in  circles.  It’s  obvious
that  a blob maintains  its  volume since all  it  does is  rigidly rotate.
In fact, the shape of the blob stays the same. But this latter fact is
special  to  the  harmonic  oscillator.  Let’s  take  another  example.
Suppose the Hamiltonian is given by

H = p q.

You  probably  don’t  recognize  this  Hamiltonian,  but  it  is
completely legitimate. Let’s work out its equations of motion:

q
×

= q

p
×

= - p.

What  these  equations  say  is  that  q  increases  exponentially  with

time,  and  p  decreases  exponentially  at  the  same  rate.  In  other

words,  the  flow  compresses  the  fluid  along  the  p  axis,  while

expanding  it  by  the  same  amount  along  the  q  axis.  Every  blob

gets stretched along q and squeezed along p. Obviously, the blob

undergoes an extreme distortion of its shape—but its phase space
volume does not change.

Liouville’s  theorem  is  the  closest  analogy  that  we  can
imagine to the kind of irreversibility we discussed in Lecture 1. In
quantum  mechanics,  Liouville’s  theorem  is  replaced  by  a
quantum  version  called  unitarity.  Unitarity  is  even  more  like  the
discussion in Lecture 1—but that’s for the next installment of The
Theoretical Minimum.
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Poisson Brackets

What  were  the  nineteenth-century  French  mathematicians
thinking  when  they  invented  these  extremely  beautiful—and
extremely  formal—mathematical  ways  of  thinking  about
mechanics?  (Hamilton  himself  was  an  exception—he  was  Irish.)
How  did  they  get  the  action  principle,  Lagrange’s  equations,
Hamiltonians,  Liouville’s  theorem?  Were  they  solving  physics
problems?  Were  they  just  playing  with  the  equations  to  see  how
pretty they could make them? Or were they devising principles by
which to characterize new laws of physics? I think the answer is a
bit of each, and they were incredibly successful in all these things.
But  the  really  astonishing  degree  of  success  did  not  become
apparent  until  the  twentieth  century  when  quantum  mechanics
was  discovered.  It  almost  seems  as  if  the  earlier  generation  of
mathematicians  were  clairvoyant  in  the  way  they  invented  exact
parallels of the later quantum concepts.

And we are  not  finished.  There  is  one  more  formulation
of  mechanics  that  seems  to  have been very  prescient.  We owe it
to the French mathematician Poisson,  whose name means “fish”
in  French.  To  motivate  the  concept  of  a  Poisson  bracket,  let’s
consider some function of qi  and pi . Examples include the kinetic

energy  of  a  system that  depends  on  the  p’s,  the  potential  energy

that  depends on the q’s,  or  the angular  momentum that  depends

on products of p’s and q’s. There are, of course, all sorts of other

quantities  that  we  might  be  interested  in.  Without  specifying  the
particular function, let’s just call it F Hq, pL.

We can think  of  F Hq, pL  in  two ways.  First  of  all,  it  is  a

function  of  position  in  the  phase  space.  But  if  we  follow  any
point  as  it  moves  through  the  phase  space—that  is,  any  actual
trajectory  of  the  system—there  will  be  a  value  of  F  that  varies
along  the  trajectory.  In  other  words,  the  motion  of  the  system
along a particular trajectory turns F  into a function of time. Let’s
compute  how  F  varies  for  a  given  point  as  it  moves,  by
computing the time derivative of F :
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function  of  position  in  the  phase  space.  But  if  we  follow  any
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compute  how  F  varies  for  a  given  point  as  it  moves,  by
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F
×

= â
i

¶F

¶qi
q
×

i +
¶F

¶ pi
p
×

i .

By  now  the  routine  should  be  obvious—we  use  Hamilton’s
equations for the time derivatives of q and p:

(8)F
×

= â
i

¶F

¶qi

¶H

¶ pi
-

¶F

¶ pi

¶H

¶qi
.

I  don’t  know exactly  what  Poisson  was  doing  when  he  invented
his  bracket,  but  I  suspect  he  just  got  tired  of  writing  the  right
hand  side  of  Eq.  (8)  and  decided  to  abbreviate  it  with  a  new
symbol.  Take  any  two  functions  of  phase  space,  G Hq, pL  and

F Hq, pL.  Don’t  worry  about  their  physical  meaning  or  whether

one of them is the Hamiltonian. The Poisson bracket of F  and G
is defined as

(9)8F , G< = â
i

¶F

¶qi

¶G

¶ pi
-

¶F

¶ pi

¶G

¶qi
.

Poisson  could  now  save  himself  the  trouble  of  writing  Eq.  (8).
Instead, he could write

(10)F
×

= 8F , H<.
The amazing thing about Eq. (10) is that it summarizes so much.
The time derivative of anything is given by the Poisson bracket of
that  thing  with  the  Hamiltonian.  It  even  contains  Hamilton’s
.

equations themselves.  To see that,  let F Hq, pL  just  be one of the

q's:
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equations themselves.  To see that,  let F Hq, pL  just  be one of the

q's:

q
×

k = 8qk, H<.
Now,  if  you work out  the  Poisson  bracket  of  qi  and H ,  you will

discover  that  it  has  only  one  term—namely,  the  one  where  you

differentiate  qk  with respect  to itself.  Since 
¶qk
¶qk

= 1, we find that

the  Poisson  bracket  8qk, H<  is  just  equal  to  ¶H
¶ p

,  and  we  recover

the  first  of  Hamilton’s  equations.  The  second  equation  is  easily
seen to be equivalent to

p
×

k = 8 pk, H<.
Notice  that  in  this  formulation  the  two equations  have the  same
sign,  the  sign  difference  being  buried  in  the  definition  of  the
Poisson bracket.

The  French  obsession  with  elegance  really  paid  off.  The
Poisson  bracket  turned  into  one  of  the  most  basic  quantities  of
quantum mechanics: the commutator.

The Phase Space Fluid and the Gibbs-Liouville Theorem  173



Lecture 10: Poisson Brackets, Angular 
Momentum, and Symmetries

Lenny  asked,  “Hey  George,  can  we  hang  fish  on  a  Poisson
Bracket?”

George smiled. “Only if they’re theoretical.”

An Axiomatic Formulation of Mechanics

Let’s abstract a set of rules that enable one to manipulate Poisson
Brackets  (from  now  on  I’ll  use  the  abbreviation  PB)  without  all
the effort  of  explicitly calculating them. You can check (consider
it  homework)  that  the  rules  really  do  follow  from  the  definition
of  PB’s.  Let  A, B,  and C  be  functions  of  the  p’s  and q’s.  In  the

last lecture, I defined the PB:

(1)8A, C< = â
i

¶ A

¶qi

¶C

¶ pi
-

¶ A

¶ pi

¶C

¶qi
.

è The  first  property  is  antisymmetry:  If  you  interchange  the
two functions in the PB it changes sign:

(2)8A, C< = -8C , A<.
In  particular,  that  means  that  the  PB  of  a  function  with
itself is zero:

(3)8A, A< = 0.

è Next  is  linearity  in  either  entry.  Linearity  entails  two
properties.  First,  if  you  multiply  A  (but  not  C)  by  a
constant k, the PB gets multiplied by the same constant:



(4)8k A, C< = k 8A, C<.
Second  if  you  add  A + B  and  take  the  PB  with  C ,  the
result is additive:

(5)8HA + BL, C< = 8A, C< + 8B, C<.
Eq.s (2) and (3) define the linearity property of PB’s.

è Next we consider what happens when we multiply A and
B  and  then  take  the  PB  with  C .  To  figure  it  out,  all  you
need  to  do  is  go  back  to  the  definition  of  the  PB  and
apply the rule for differentiating a product. For example,

¶HA BL
¶q

= A
¶B

¶q
+ B

¶ A

¶q
.

The  same  thing  is  true  for  derivatives  with  respect  to  p.
Here is the rule:

(6)8HA BL, C< = B 8A, C< + A 8B, C<.
è Finally,  there  are  some  specific  PB’s  that  you  need  in

order to get started. Begin by noting that any q or any p is
a  function  of  the  p’s  and  q’s.  Since  every  PB  involves
derivatives with respect to both p’s and q’s, the PB of any
q with any other q is zero. The same is true for the PB of
two p’s:

(7)
9qi , q j = = 0

9 pi , p j = = 0.

But  a  PB  of  a  q  with  a  p  is  not  zero.  The  rule  is  that
9qi , p j =  is  one  if  i = j  and  zero  otherwise.  Using  the

Kronecker symbol,

(8)9qi , p j = = ∆ij .

Now  we  have  everything  we  need  to  calculate  any  PB.  We  can
forget the definition and think of Eq.s (2, 3, 4, 5, 6, 7, and 8) as a
set of axioms for a formal mathematical system.

Suppose we want to compute
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Now  we  have  everything  we  need  to  calculate  any  PB.  We  can
forget the definition and think of Eq.s (2, 3, 4, 5, 6, 7, and 8) as a
set of axioms for a formal mathematical system.

Suppose we want to compute

(9)8qn, p<,
where for simplicity I have assumed a system with just one q and

one p. I will tell you the answer and then prove it. The answer is

(10)8qn, p< = n qHn-1L.

The  way  to  prove  this  kind  of  formula  is  to  use  mathematical
induction.  That  takes  two  steps.  The  first  step  is  to  assume  the
answer  for  n  (assume  the  induction  hypothesis,  Eq.  (10))  and
show  that  it  follows  for  n + 1.  The  second  step  is  to  explicitly
show that the induction hypothesis holds for n = 1.

Thus,  replacing  n  with  n + 1,  we can write  Eq.  (9)  using
Eq. (6):

9qHn+1L, p= = 8q × qn, p<
= q 8qn, p< + qn 8q, p<.

Next use Eq. (8), which in this case is just 8q, p< = 1:

9qHn+1L, p= = 8q × qn, p<
= q 8qn, p< + qn .

We now use the induction hypothesis—Eq. (10)—and get

(11)

9qHn+1L, p= = 8q × qn, p<
= q n qHn-1L + qn

= Hn + 1L qn.

Equation  (11)  is  exactly  the  induction  hypothesis  for  n + 1.
Therefore,  all  we  need  to  do  is  show  that  Eq.  (10)  holds  for
n = 1. But  all  it  says is  that  8q, p< = 1, which is  of  course true.

Thus Eq. (10) is true.
We  can  write  this  example  in  another  way  that  has  far-

reaching  consequences.  Notice  that  n qHn-1L  is  nothing  but  the

derivative of qn. Thus, for this case,
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Equation  (11)  is  exactly  the  induction  hypothesis  for  n + 1.
Therefore,  all  we  need  to  do  is  show  that  Eq.  (10)  holds  for
n = 1. But  all  it  says is  that  8q, p< = 1, which is  of  course true.

Thus Eq. (10) is true.
We  can  write  this  example  in  another  way  that  has  far-

reaching  consequences.  Notice  that  n qHn-1L  is  nothing  but  the

derivative of qn. Thus, for this case,

(12)8qn, p< =
dHqnL
d q

.

Now take any polynomial (even an infinite power series) of q. By

applying  Eq.  (12)  to  each  term  in  the  polynomial  and  using
linearity to combine the results, we can prove

(13)8FHqL, p< =
d FHqL

d q
.

Since  any  smooth  function  can  be  arbitrarily  well  approximated
by  a  polynomial,  this  enables  us  to  prove  Eq.  (13)  for  any
function of q. In fact, it even goes further.  For any function of q

and p, it is easy to prove that

(14)8FHq, pL, pi< =
¶FHq, pL

¶qi
.

Exercise  1: Prove Eq. (14).

Thus  we  have  discovered  a  new  fact  about  Poisson  Brackets:
Taking  the  PB  of  any  function  with  pi  has  the  effect  of   differentiating  the

function  with  respect  to  qi .  We could  have proved  that  directly  from

the definition of the PB, but I wanted to show you that it follows
from the formal axioms.

What  about  taking  the  Poisson  bracket  of  F Hq, pL  with

qi? You may be able to guess the answer from the symmetric way

in which the p's and q's enter all the rules. By now you may even

guess the sign of the answer:
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What  about  taking  the  Poisson  bracket  of  F Hq, pL  with

qi? You may be able to guess the answer from the symmetric way

in which the p's and q's enter all the rules. By now you may even

guess the sign of the answer:

(15)8FHq, pL, qi< = -
¶FHq, pL

¶ pi
.

Exercise   2:  Hamilton’s  equations  can  be  written  in  the

form  q
×

= 8q, H<  and  p
×

= 8 p, H<.  Assume  that  the

Hamiltonian  has  the  form  H =
1

2 m
p2

+ V HqL.  Using

only  the  PB  axioms,  prove  Newton’s  equations  of
motion.

Angular Momentum

In  Lecture  7,  I  explained  the  relationship  between  rotation
symmetry  and  the  conservation  of  angular  momentum.  Just  to
remind you, I will briefly review it for the case of a single particle
moving  in  the  x, y  plane.  We  wrote  the  formula  for  an

infinitesimal rotation in the form

(16)
∆ x = Ε fx = -Ε y
∆ y = Ε f y = Ε x.

Then,  assuming  that  the  Lagrangian  is  invariant,  we  derived  a
conserved quantity

Q = px fx + p y f y ;

with a change of sign, we call it the angular momentum L,
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(17)L = x p y - y px .

Now  I  want  to  go  to  three-dimensional  space,  where
angular  momentum  has  the  status  of  a  vector.  Equation  (16)  is
still  true,  but  it  takes  on a new meaning:  It  becomes the rule  for
rotating a system about the z  axis. In fact, we can fill it out with a

third  equation  that  expresses  the  fact  that  z  is  unchanged  by  a

rotation about the z axis:

(18)

∆ x = Ε fx = -Ε y
∆ y = Ε f y = Ε x

∆ z = 0.

Equation (17) is also unchanged, except that we interpret the left-
hand  side  as  the  z  component  of  the  angular  momentum.  The

other  two  components  of  angular  momentum  are  also  easily
computed,  or  you  can  guess  them  just  by  cycling  the  equation
x ® y, y ® z, z ® x:

Lz = x p y - y px

Lx = y pz - z p y

L y = z px - x pz .

As  you  might  expect,  each  component  of  the  vector  L
®

 is
conserved if the system is rotationally symmetric about every axis.

Now  let’s  consider  some  Poisson  Brackets  involving
angular momentum. For example, consider the PB’s of x, y, and

z with Lz :
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(19)

9x, Lz= = 9x, Ix p y - y pxM=
9 y, Lz= = 9 y, Ix p y - y pxM=
9z, Lz= = 9z, Ix p y - y pxM=.

You can work out these PB’s using the definition Eq. (1), or you
can use the axioms.

Exercise   3:  Using  both  the  definition  of  PB’s  and  the
axioms,  work  out  the  PB’s  in  Equations  (19).  Hint:  In

each expression, look for things in the parentheses that have

nonzero  Poisson  Brackets  with  the  coordinate  x, y,  or  z.

For example, in the first PB, x has a nonzero PB with px.

Here are the results:

9x, Lz= = - y

9 y, Lz= = x

9z, Lz= = 0.

If  we compare this  with Equations (18)  we see a very interesting
pattern.  By  taking  the  PB’s  of  the  coordinates  with  Lz  we

reproduce (apart from the Ε) the expressions for the infinitesimal
rotation about the z axis. In other words,

9x, Lz=~ ∆ x

9 y, Lz=~ ∆ y

9z, Lz=~ ∆ z.

where ~ means “apart from the factor Ε.”
The fact that taking a PB with a conserved quantity gives

the  transformation  behavior  of  the  coordinates  under  a
symmetry—the symmetry related to the conservation law—is not
an  accident.  It  is  very  general  and  gives  us  another  way  to  think
about  the  relationship  between  symmetry  and  conservation.
Before  we  pursue  this  relationship  further,  let’s  explore  other
PB’s  involving  angular  momentum.  First  of  all,  it  is  easy  to
generalize  to  other  components  of  L.  Again,  you  can  do  it  by
cycling x ® y,  y ® z,  z ® x.  You’ll  get  six  more  equations,  and

you  might  wonder  whether  there  is  a  nice  way  to  summarize
them. In fact there is.
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where ~ means “apart from the factor Ε.”
The fact that taking a PB with a conserved quantity gives

the  transformation  behavior  of  the  coordinates  under  a
symmetry—the symmetry related to the conservation law—is not
an  accident.  It  is  very  general  and  gives  us  another  way  to  think
about  the  relationship  between  symmetry  and  conservation.
Before  we  pursue  this  relationship  further,  let’s  explore  other
PB’s  involving  angular  momentum.  First  of  all,  it  is  easy  to
generalize  to  other  components  of  L.  Again,  you  can  do  it  by
cycling x ® y,  y ® z,  z ® x.  You’ll  get  six  more  equations,  and

you  might  wonder  whether  there  is  a  nice  way  to  summarize
them. In fact there is.

Mathematical Interlude—The Levi-Civita Symbol

A  good  notation  can  be  worth  a  lot  of  symbols,  especially  if  it
appears  over  and  over.  An  example  is  the  Kronecker  delta
symbol  ∆ij .  In  this  section  I  will  give  you  another  one,  the  Levi-

Civita  symbol,  which  is  also  called  the  Ε  symbol  Εijk.  As  in  the

Kronecker  case,  the  indices  i, j , k  represent  the  three  directions

of  space,  either  x, y, z  or  1,  2,  3.  The  Kronecker  symbol  takes

on  two  values:  either  1  or  0,  depending  on  whether  i = j  or

i ¹ j . The Ε symbol takes on one of three values: 0, 1, or –1. The

rules for Εijk are a little more complicated than those for ∆ij .

First of all, Εijk = 0 if any two indices are the same.—for

example,  Ε111  and  Ε223  are  both  zero.  The  only  time  Εijk  is  not

zero  is  when  all  three  indices  are  different.  There  are  six
possibilities:  Ε123,  Ε231,  Ε312,  Ε213,  Ε132,  Ε321.  The first  three have
value 1, and the second three have value -1.

What  is  the  difference  between  the  two  cases?  Here  is
one  way  to  describe  it:  Arrange  the  three  numbers  1,  2,  3  on  a
circle, like a clock with only three hours (see Figure 1).
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1

23

Figure 1: A circular arrangement of the numbers 1, 2, and 3.

Start  at  any  of  the  three  numbers  and  go  around
clockwise.  You  get  (123),  (231),  or  (312),  depending  on  where
you  start.  If  you  do  the  same  going  counterclockwise,  you  get
(132),  (213),  or  (321).  The rule for  the Levi-Civita  symbol  is  that
Εijk = 1,  for  the  clockwise  sequences,  and  Εijk = -1  for  the

counterclockwise sequences.

Back to Angular Momentum

Now, with the aid of the Ε  symbol,  we can write the PB’s for  all

the coordinates and all the components of L
®

:

(20)9xi , L j = = â
k

Εijk xk.

For example, suppose that you want to know 8 y, Lx<. Identifying

1, 2, 3 with x, y, z and plugging these into Eq. (20) we get

8x2, L1< = Ε213 x3.

Since 213 is a counterclockwise sequence, Ε213 = -1, so

8x2, L1< = -x3.

Let’s  consider  another  set  of  PB’s—namely,  the  PB’s  of

pi  with  the  components  of  L
®

.  They  are  easy  to  work  out,  and

with the aid of the Ε symbol, we get
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Let’s  consider  another  set  of  PB’s—namely,  the  PB’s  of

pi  with  the  components  of  L
®

.  They  are  easy  to  work  out,  and

with the aid of the Ε symbol, we get

9 pi , L j = = Εijk pk.

For example,

9 px , Lz= = - p y .

The  thing  to  notice  is  that  the  PB’s  of  the  p’s  and  L’s  have

exactly  the  same  form  as  those  of  the  x’s  and  L’s.  That  is
interesting  because  the  p’s  and  x’s  transform  exactly  the  same

way  under  a  rotation  of  coordinates.  Just  as  ∆ x ~- y  for  a

rotation about z, the variation of px  is proportional to – p y .

The meaning of this is quite deep. It says that to compute
the  change  in  any  quantity  when  the  coordinates  are  rotated,  we
compute  the  Poisson  bracket  of  the  quantity  with  the  angular
momentum. For a rotation about the ith axis,

(21)∆ F = 8F , Li<.
The angular momentum is the generator of rotations.

We  will  come  back  to  this  theme,  and  to  the  intimate
relationship  connecting  symmetry  transformations,  Poisson
Brackets,  and  conserved  quantities,  but  first  I  want  to  explain
how PB’s can be useful in formulating and solving problems.

Rotors and Precession

One  thing  we  haven’t  done  yet  is  to  compute  the  PB’s  between
different  components  of  the  angular  momentum.  The  PB  of
anything with itself is always zero, but the PB of one component

of L
®

 with another is not zero. Consider
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9Lx , L y= = 9I y pz - z p yM, Iz px - x pz M=.
Either by using the definition of PB’s or by using the axioms, we
will get

9Lx , L y= = Lz .

Try it.
The  general  relation  can  be  read  off  by  cycling  through

x, y, z. Here it is using the Levi-Civita symbol:

(22)9Li , L j = = â
k

Εijk Lk.

That’s  very  pretty,  but  what  can  we  do  with  it?  To  illustrate  the
power of relations such as Eq. (22), let’s consider a small, rapidly
spinning ball  in outer space. Call it  a rotor.  At any instant  there is
an axis of rotation, and the angular momentum is along that axis.
If  the  rotor  is  isolated  from  all  influences,  then  its  angular
momentum  will  be  conserved,  and  the  axis  of  rotation  will  not
change.

Now suppose the rotor has some electric charge. Because
the rotor is rapidly spinning, it behaves like an electromagnet with
its north and south poles along the rotation axis. The strength of
the dipole is proportional to the rate of rotation—or, better yet—
to the angular momentum. This won’t make any difference unless

we put  the whole thing in a magnetic  field  B
®

.  In  that  case,  there

will be some energy associated with any misalignment between L
®

and B
®

 (see Figure 2).
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L
®

B
®

Figure 2: A rotor aligned at an angle to 
a magnetic field.

That  energy  is  proportional  to  the  cosine  of  the  angle
between the two vectors and to the product of their magnitudes.
In  other  words,  the  alignment  energy  is  proportional  to  the  dot
product

(23)H ~ B
®

× L
®

.

I’ve used the notation H  for energy because later we will identify
it with the Hamiltonian of the system.

Let’s take the magnetic field to be along the z  axis so that

H  is  proportional  to  the  z  component  of  L
®

.  Lumping  the

magnetic  field,  the  electric  charge,  the  radius  of  the  sphere,  and
all  the  other  unspecified  constants  into  a  single  constant  Ω,  the
energy of alignment takes the form

(24)H = Ω Lz .

Let’s  pause  for  some  perspective  on  what  we  are  doing  and
where we are going.  It’s  obvious  that  without  the magnetic field,
the  system  is  rotationally  symmetric  in  the  sense  that  the  energy
does  not  change if  you rotate  the axis  of  the rotor.  But  with the
magnetic field, there is something to rotate relative to. Therefore,
the  rotational  symmetry  is  ruined.  Eq.s  (23)  and  (24)  represent
the  rotational  asymmetry.  But  what  is  the  effect?  The  answer  is
obvious:  The  angular  momentum  is  no  longer  conserved—no
symmetry,  no conservation.  That means the direction of the spin
will change with time, but exactly how?

One can try to guess the answer. The rotor is a magnet—
like  a  compass  needle—and  intuition  suggests  that  the  angular

momentum  will  swing  toward  the  direction  of  B
®

,  like  a
pendulum.  That’s  wrong  if  the  spin  is  very  rapid.  What  does
happen  is  that  the  angular  momentum  precesses,  exactly  like  a
gyroscope,  around  the  magnetic  field.  (A  gyroscope  would
precess  about  the  gravitational  field.)  To  see  that,  let’s  use  the
Poisson  Bracket  formulation  of  mechanics  to  work  out  the

equations of motion for the vector L
®

.
First,  recall  that  the time derivative of any quantity is  the

PB  of  that  quantity  with  the  Hamiltonian.  Applying  this  rule  to

the components of L
®

 gives
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where we are going.  It’s  obvious  that  without  the magnetic field,
the  system  is  rotationally  symmetric  in  the  sense  that  the  energy
does  not  change if  you rotate  the axis  of  the rotor.  But  with the
magnetic field, there is something to rotate relative to. Therefore,
the  rotational  symmetry  is  ruined.  Eq.s  (23)  and  (24)  represent
the  rotational  asymmetry.  But  what  is  the  effect?  The  answer  is
obvious:  The  angular  momentum  is  no  longer  conserved—no
symmetry,  no conservation.  That means the direction of the spin
will change with time, but exactly how?

One can try to guess the answer. The rotor is a magnet—
like  a  compass  needle—and  intuition  suggests  that  the  angular

momentum  will  swing  toward  the  direction  of  B
®

,  like  a
pendulum.  That’s  wrong  if  the  spin  is  very  rapid.  What  does
happen  is  that  the  angular  momentum  precesses,  exactly  like  a
gyroscope,  around  the  magnetic  field.  (A  gyroscope  would
precess  about  the  gravitational  field.)  To  see  that,  let’s  use  the
Poisson  Bracket  formulation  of  mechanics  to  work  out  the

equations of motion for the vector L
®

.
First,  recall  that  the time derivative of any quantity is  the

PB  of  that  quantity  with  the  Hamiltonian.  Applying  this  rule  to

the components of L
®

 gives

L
×

z = 9Lz , H=
L
×

x = 8Lx , H<
L
×

y = 9L y , H=.
or, using Eq. (24)

L
×

z = Ω 9Lz , Lz=
L
×

x = Ω 9Lx , Lz=
L
×

y = Ω 9L y , Lz=.
Now we  can  see  the  point.  Even  if  we  know  nothing  about  the
material  that  the  rotor  is  made  of,  where  the  charge  resides,  or
how many  particles  are  involved,  we  can  solve  the  problem:  We

know  the  PB’s  between  all  components  of  L
®

.  First  we  take  the

equation for L
×

z . Since it involves the PB of Lz  with itself,
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Now we  can  see  the  point.  Even  if  we  know  nothing  about  the
material  that  the  rotor  is  made  of,  where  the  charge  resides,  or
how many  particles  are  involved,  we  can  solve  the  problem:  We

know  the  PB’s  between  all  components  of  L
®

.  First  we  take  the

equation for L
×

z . Since it involves the PB of Lz  with itself,

L
×

z = 0.

The  z  component  of  L
®

 does  not  change.  That  immediately

precludes the idea that L
®

 swings like a pendulum about B
®

.

Next we use Eq. (22) to work out L
×

x  and L
×

y :

L
×

x = -Ω L y

L
×

y = Ω Lx .

This is exactly the equation of a vector in the x, y  plane rotating

uniformly  about  the  origin  with  angular  frequency  Ω.  In  other

words,  L
®

 precesses  about  the  magnetic  field.  The  magic  of
Poisson  Brackets  allows  us  to  solve  the  problem  knowing  very

little other than that the Hamiltonian is proportional to B
®

× L
®

.

Symmetry and Conservation

Let’s  go  back  to  Eq.  (21),  the  meaning  of  which  is  that  the
variation  of  any  quantity,  under  the  action  of  a  rotation,  is
proportional  to  the  PB  of  that  quantity  with  Li .  Moreover,  Li
happens  to  be  the  quantity  that  is  conserved  by  virtue  of
invariance  with  respect  to  rotation.  That’s  an  interesting
connection,  and  one  wonders  how  general  it  is.  Let  me  give  a
couple  of  other  examples  of  the  same  thing.  Consider  a  particle
on a line. If there is translation invariance, then the momentum p

is conserved. Now take the PB of any function of x with p:
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Let’s  go  back  to  Eq.  (21),  the  meaning  of  which  is  that  the
variation  of  any  quantity,  under  the  action  of  a  rotation,  is
proportional  to  the  PB  of  that  quantity  with  Li .  Moreover,  Li
happens  to  be  the  quantity  that  is  conserved  by  virtue  of
invariance  with  respect  to  rotation.  That’s  an  interesting
connection,  and  one  wonders  how  general  it  is.  Let  me  give  a
couple  of  other  examples  of  the  same  thing.  Consider  a  particle
on a line. If there is translation invariance, then the momentum p

is conserved. Now take the PB of any function of x with p:

8FHxL, p< =
d F

d x
.

What  is  the change in F HxL  under  an infinitesimal  translation  by
distance Ε? The answer is

∆ F = Ε
d F

d x
,

or

∆ F = Ε 8FHxL, p<.
Here’s  another  example:  If  a  system  has  time-translation
invariance,  then  the  Hamiltonian  is  conserved.  What  is  the  small
change  in  a  quantity  under  a  time  translation?  You  guessed  it—
the time derivative of the PB of the quantity with H .

Let’s see if we can generalize the connection. Let G Hq, pL
be  any  function  of  the  coordinates  and  momenta  of  a  system.  I
use  the  letter  G  because  I  am going  to  call  it  a  generator.  What  it
generates  is  small  displacements  of  the  phase  space  points.  By
definition, we will shift every point in phase space by the amount
∆ qi , ∆ pi , where

(25)
∆ qi = 8qi , G<
∆ pi = 8 pi , G<.

Equations  (25)  generate  an  infinitesimal  transformation  of  phase
space.  The  transformation  generated  by  G  may  or  may  not  be  a
symmetry of the system. What exactly does it mean to say that it
is  a  symmetry?  It  means  that  no  matter  where  you  start,  the
transformation  does  not  change  the  energy.  In  other  words,  if
∆ H = 0  under  the  transformation  generated  by  G,  then  the
transformation  is  a  symmetry.  We  can  therefore  write  that  the
condition for a symmetry is
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Equations  (25)  generate  an  infinitesimal  transformation  of  phase
space.  The  transformation  generated  by  G  may  or  may  not  be  a
symmetry of the system. What exactly does it mean to say that it
is  a  symmetry?  It  means  that  no  matter  where  you  start,  the
transformation  does  not  change  the  energy.  In  other  words,  if
∆ H = 0  under  the  transformation  generated  by  G,  then  the
transformation  is  a  symmetry.  We  can  therefore  write  that  the
condition for a symmetry is

(26)8H , G< = 0.

But  Eq.  (26)  can  be  read  another  way.  Since  interchanging  the
order of the two functions in a PB changes only the sign, Eq. (26)
may be expressed as

(27)8G, H< = 0.

which is exactly the condition that G is conserved. One can say it
this  way: The same Poisson Bracket that tells  us how H  changes
under  the  transformation  generated  by  G  also  tells  us  how  G
changes with time.
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Lecture 11: Electric and Magnetic Forces
He kept  a  magnet  in  his  coat  pocket.  How it  attracted  nails  and
other  bits  of  metal  was an endless  source  of  fascination,  and the
way  it  spun  the  needle  of  his  compass,  round  and  round  the
world. What magic was inside that horseshoe-shaped  bit of iron?
Whatever  it  was,  Lenny  never  tired  of  playing  with  his  favorite
toy.
         What he didn’t know was that the whole Earth is a magnet.
Or that the earth-magnet was a providential  force, that protected
him  from  deadly  solar  radiation,  bending  the  paths  of  charged
particles  into  safe  orbits.  For  the  moment  such  things  were
beyond Lenny’s imagination.

“Tell me about magnets, George.”

Vector Fields

A  field  is  nothing  but  a  function  of  space  and  time  that  usually
represents  some  physical  quantity  that  can  vary  from  point  to
point  and  from  time  to  time.  Two  examples  taken  from
meteorology are the local temperature and the air pressure.  Since
the  temperature  can  vary,  it  makes  sense  to  think  of  it  as  a
function  of  space  and  time,  T Hx, y, z, tL,  or,  more  simply,

T Hx, tL.  The  temperature  and  air  pressure  are  obviously  not
vector  fields.  They  have  no  sense  of  direction,  nor  do  they  have
components  in different  directions.  Asking for  the y  component

of  temperature  is  nonsense.  A  field  that  consists  of  only  one
number  at  each  point  of  space  is  called  a  scalar  field.  The
temperature field is a scalar.

There  are,  however,  vector  fields  such  as  the  local  wind
velocity. It has a magnitude, a direction, and components. We can

write it as v
®Hx, tL, or we can write its components viHx, tL. Other

examples  of  vector  fields  are  the  electric  and  magnetic  fields
created by electric charges and currents.

Because  such  fields  vary  in  space,  we  can  construct  new
fields by differentiating the original fields. For example, the three

partial  derivatives  of  temperature,  ¶T
¶x

, ¶T
¶ y

, ¶T
¶z

,  can  be  considered

to  be  the  components  of  a  vector  field  called  the  temperature
gradient. If the temperature increases from north to south then the
gradient  points  toward  the  south.  Let’s  spend  a  little  time  going
over  the  tricks  used  to  create  new  fields  from  old  ones  by
differentiating.
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®Hx, tL, or we can write its components viHx, tL. Other

examples  of  vector  fields  are  the  electric  and  magnetic  fields
created by electric charges and currents.

Because  such  fields  vary  in  space,  we  can  construct  new
fields by differentiating the original fields. For example, the three

partial  derivatives  of  temperature,  ¶T
¶x

, ¶T
¶ y

, ¶T
¶z

,  can  be  considered

to  be  the  components  of  a  vector  field  called  the  temperature
gradient. If the temperature increases from north to south then the
gradient  points  toward  the  south.  Let’s  spend  a  little  time  going
over  the  tricks  used  to  create  new  fields  from  old  ones  by
differentiating.

Mathematical Interlude: Del

Let’s invent a fake vector called Ñ
®

. The verbal name of Ñ is “del,”
standing, I suppose,  for delta, although an honest delta is written

as D. The components of Ñ
®

 are not numbers. They are derivative
symbols:

(1)

Ñx º
¶

¶x

Ñ y º
¶

¶ y

Ñz º
¶

¶z

At first  sight  Equations  (1)  look like nonsense.  The  components
of  vectors  are  numbers,  not  derivative  symbols.  And anyway the
derivative  symbols  don’t  make  sense—derivatives  of  what?  The
point is that Ñ never stands alone. Just like the derivative symbol

d
d x

,  it  must  act  on something—it must  have a function of  some

sort  to  differentiate.  For  example,  Ñ  can  act  on  a  scalar  such  as
the temperature. The components of Ñ T  are
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At first  sight  Equations  (1)  look like nonsense.  The  components
of  vectors  are  numbers,  not  derivative  symbols.  And anyway the
derivative  symbols  don’t  make  sense—derivatives  of  what?  The
point is that Ñ never stands alone. Just like the derivative symbol

d
d x

,  it  must  act  on something—it must  have a function of  some

sort  to  differentiate.  For  example,  Ñ  can  act  on  a  scalar  such  as
the temperature. The components of Ñ T  are

Ñx T º
¶T

¶x

Ñ y T º
¶T

¶ y

Ñz T º
¶T

¶z
.

and they indeed form the components of a genuine vector field—
the gradient of the temperature. In a similar way, we can form the
gradient of any scalar field.

Next,  let’s  define  the  divergence  of  a  vector  field.  The
divergence  is  defined  in  analogy  with  the  dot  product  of  two

vectors  V
®

× A
®

= Vx Ax + V y A y + Vz Az ,  which,  by  the

way, is a scalar. The divergence of a vector is also a scalar. Let the

vector field be A
®HxL.  The divergence of  A

®
 is  the dot  product  of

Ñ
®

 and A
®

—in other words, Ñ
®

× A
®

. The meaning of this symbol is
easy to guess by analogy with the usual dot product:

(2)Ñ
®

× A
®

=
¶ Ax

¶x
+

¶ A y

¶ y
+

¶ Az

¶z
.

Then consider the cross product of two vectors V
®

 and A
®

which  gives  another  vector.  The  components  of  the  cross
product are
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Then consider the cross product of two vectors V
®

 and A
®

which  gives  another  vector.  The  components  of  the  cross
product are

V
®

� A
®

x
= V y Az - Vz A y

V
®

� A
®

y
= Vz Ax - Vx Az

V
®

� A
®

z
= Vx A y - V y Az .

Here is another way to write them using the Levi-Civita symbol:

(3)V
®

� A
®

i
= â

k
â

j

Εijk V j Ak.

Exercise  1:  Confirm  Eq.  (3).  Also  prove  that

Vi A j - V j Ai = Úk Εijk V
®

� A
®

i
 . 

Now let’s substitute the fake vector Ñ
®

 for V
®

 in Eq. (3):

Ñ
®

� A
®

i
= â

k
â

j

Εijk
¶ Ak

¶x j
.

More explicitly

Ñ
®

� A
®

x
=

¶ Az

¶ y
-

¶ A y

¶z

Ñ
®

� A
®

y
=

¶ Ax

¶z
-

¶ Az

¶x
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Ñ
®

� A
®

z
=

¶ A y

¶x
-

¶ Ax

¶ y
.

What  we  have  done  is  to  start  with  a  vector  field  A
®HxL  and

generate  another  vector  field  Ñ
®

� A
®

 by  differentiating  A  in  a

particular way. The new vector field Ñ
®

� A
®

 is called the curl of A
®

.
Here is a theorem that takes a few seconds to prove. For

any starting field A
®HxL, the curl of A has no divergence,

Ñ
®

× Ñ
®

� A
®

= 0.

The theorem actually has a stronger form that is harder to prove.
A field has zero divergence if and only if it is the curl of another
field.

Here  is  another  theorem  that  is  easy  to  prove.  Let  a
vector field be defined by the gradient of a scalar field:

E
®HxL = Ñ

®

V HxL

where V  is the scalar. Then it follows that the curl of E
®

 is zero:

(4)Ñ
®

� Ñ
®

V HxL = 0.

Exercise  2: Prove Eq. (4). 

Magnetic Fields

Magnetic  fields  (called  B
® HxL)  are  vector  fields,  but  not  just  any

vector  field  can  represent  a  magnetic  field.  All  magnetic  fields
have  one  characteristic  feature:  Their  divergence  is  zero.  Thus  it
follows that any magnetic field can be expressed as a curl of some
auxiliary field:
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Magnetic  fields  (called  B
® HxL)  are  vector  fields,  but  not  just  any

vector  field  can  represent  a  magnetic  field.  All  magnetic  fields
have  one  characteristic  feature:  Their  divergence  is  zero.  Thus  it
follows that any magnetic field can be expressed as a curl of some
auxiliary field:

(5)B
®

= Ñ
®

� A
®

where A
®

 is called the vector potential. In component form,

(6)

Bx =
¶ Az

¶ y
-

¶ A y

¶z

B y =
¶ Ax

¶z
-

¶ Az

¶x

Bz =
¶ A y

¶x
-

¶ Ax

¶ y
.

The vector potential is a peculiar field. In a sense it does not have
the same reality  as  magnetic  or  electric  fields.  It’s  only  definition
is that its curl is the magnetic field. A magnetic or electric field is
something that you can detect locally. In other words, if you want
to  know  whether  there  is  an  electric/magnetic  field  in  a  small
region of space, you can do an experiment in that same region to
find out. The experiment usually consists of seeing whether there
are  any  forces  exerted  on  charged  particles  in  that  region.  But
vector  potentials  cannot  be  detected  locally.  First  of  all,  they  are
not  uniquely  defined  by  the  magnetic  field  they  are  representing.

Suppose  B
®

 is  given  by  a  vector  potential,  as  in  Eq.  (5).  We  can

always  add  a  gradient  to  A
®

 to  define  a  new  vector  potential

without  changing  B
®

.  The  reason  is  that  the  curl  of  a  gradient  is
always zero. Thus if two vector potentials are related by
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A '
®

= A
®

+ Ñ s

for some scalar s, then they produce identical magnetic fields and
cannot be distinguished by any experiment.

This  is  not  the  first  time  we  have  seen  an  ambiguity
having  to  do  with  one  thing  being  defined  by  a  derivative  of
another.  Remember  that  the  force  on  a  system  is  minus  the
gradient of the potential energy:

F
®HxL = - Ñ UHxL.

The  potential  energy  is  not  unique:  You  can  always  add  a
constant  without  changing  the  force.  This  means  that  you  can
never  directly  measure  the  potential,  but  only  its  derivative.  The
situation is  similar  with the vector potential;  indeed, that’s why it
is called a potential.

Let’s  consider  an  example  of  a  magnetic  field  and  its
associated  vector  potential.  The  simplest  case  is  a  uniform
magnetic field pointing, say, along the z axis:

(7)

Bx = 0
B y = 0

Bz = b,

where  b  is  a  number  representing  the  strength  of  the  field.  Now
define a vector potential by

(8)

Ax = 0
A y = b x

Az = 0.

When the curl of A
®

 is  computed, there is only one term, namely
.
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When the curl of A
®

 is  computed, there is only one term, namely
.
¶A y

¶ x
= b. Thus the only component of the magnetic field is the z

component, and it has value b.
Now, there is  something funny about Equations (8).  The

uniform  magnetic  field  seems  to  be  completely  symmetric  with
respect to rotations in the x, y plane. But the vector potential has

only  a  y  component.  However,  we  could  have  used  a  different

vector  potential  A
®

'—one  with  only  an  x  component—to
generate the very same magnetic field:

(9)

A 'x = -b y
A ' y = 0

A 'z = 0.

Exercise  3: Show that the vector potentials in Equations
(8)  and  Equations  (9)  both  give  the  same  uniform
magnetic  field.  This  means  that  the  two  differ  by  a
gradient. Find the scalar whose gradient, when added to
Equations (8), gives Equations (9). 

The  operation  of  changing  from one  vector  potential  to  another
to describe the same magnetic field has a name. It is called a gauge
transformation.  Why “gauge”? It’s a historical  glitch. At one time it
was  wrongly  thought  to  reflect  ambiguities  in  gauging  lengths  at
different locations.

If  the  vector  potential  is  ambiguous  but  the  magnetic
field  quite  definite,  why  bother  with  the  vector  potential  at  all?
The answer is  that without it,  we could not express  the principle
of stationary action, or the Lagrangian, Hamiltonian, and Poisson
formulations  of  mechanics  for  particles  in  magnetic  fields.  It’s  a
weird  situation:  The  physical  facts  are  gauge  invariant,  but  the
formalism  requires  us  to  choose  a  gauge  (a  particular  choice  of
vector potential).
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The operation  of  changing  from one  vector  potential  to  another
to describe the same magnetic field has a name. It is called a gauge
transformation.  Why “gauge”? It’s a historical  glitch. At one time it
was  wrongly  thought  to  reflect  ambiguities  in  gauging  lengths  at
different locations.

If  the  vector  potential  is  ambiguous  but  the  magnetic
field  quite  definite,  why  bother  with  the  vector  potential  at  all?
The answer is  that without it,  we could not express  the principle
of stationary action, or the Lagrangian, Hamiltonian, and Poisson
formulations  of  mechanics  for  particles  in  magnetic  fields.  It’s  a
weird  situation:  The  physical  facts  are  gauge  invariant,  but  the
formalism  requires  us  to  choose  a  gauge  (a  particular  choice  of
vector potential).

The Force on a Charged Particle

Electrically  charged  particles  are  influenced  by  electric  and

magnetic  fields  E
®

 and  B
®

.  The  force  due  to  the  electric  field  is
simple  and  of  the  form  that  we  studied  in  earlier  chapters;
specifically, it is the gradient of a potential energy. In terms of the
electric field,

F
®

= e E
®

,

where e is the charge of the particle. It is a rule of electromagnetic
theory that a static (not time-dependent) electric field has no curl
so it must be a gradient. The usual notation is

E
®

= - Ñ
®

V ,

so we can write the force as

F
®

= - e Ñ
®

V .

The  potential  energy  is  e Ñ
®

V ,  and  everything  is  completely
conventional.

Magnetic  forces  on  charged  particles  are  different  and  a
little more complicated. They depend not only on the position of
the  particle  through  the  value  of  the  magnetic  field,  but  also  on
the velocity of the particle. They are referred to as velocity-dependent
forces.  The  magnetic  force  on  a  charged  particle  was  first  written
down by the great Dutch physicist H. A. Lorentz and is called the
Lorentz force. It involves the velocity vector of the particle and the
speed of light c :
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The  potential  energy  is  e Ñ
®

V ,  and  everything  is  completely
conventional.

Magnetic  forces  on  charged  particles  are  different  and  a
little more complicated. They depend not only on the position of
the  particle  through  the  value  of  the  magnetic  field,  but  also  on
the velocity of the particle. They are referred to as velocity-dependent
forces.  The  magnetic  force  on  a  charged  particle  was  first  written
down by the great Dutch physicist H. A. Lorentz and is called the
Lorentz force. It involves the velocity vector of the particle and the
speed of light c :

(10)F
®

=
e

c
v
®

� B
®

.

Notice  that  the  Lorentz  force  is  perpendicular  to  both  the
velocity  and  the  magnetic  field.  Combining  Eq.  (10)  with

Newton’s  F
®

= m a
®

,  we  find  that  the  equations  of  motion  for  a
particle in a magnetic field are

(11)m a
®

=
e

c
v
®

� B
®

.

The  Lorentz  force  is  not  the  first  velocity-dependent  force  we
have  encountered.  Recall  that  in  a  rotating  frame,  there  are  two
so-called fictitious  forces:  The centrifugal  force and (more to the
point) the Coriolis force. The Coriolis force is given by

(12)F
®

= 2 m v
®

� Ω
®

,

where  Ω
®

 is  the  vector  representing  the  angular  velocity  of  the
rotating  frame.  The  Coriolis  and  Lorentz  forces  are  very  similar,
with the magnetic field and the angular velocity playing the same
role.  Of  course,  not  all  magnetic  fields  are  uniform,  so  the
magnetic  situation  can  be  far  more  complex  than  the  Coriolis
case.

The Lagrangian

All of  this  raises  the question of how to express  magnetic forces
in  the  action,  or  Lagrangian,  form  of  mechanics.  One  source  of
confusion is that the symbol for action and the symbol for vector
potential  are  both  A.  In  what  follows,  we  will  use  A  for  the

action,  and  A
®

,  or  Ai ,  as  the  vector  potential.  Let’s  ignore  or  set
equal  to  zero  the  electric  field  and  concentrate  on  the  magnetic,
or Lorentz force. Begin with the action for a free particle with no
forces:
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All of  this  raises  the question of how to express  magnetic forces
in  the  action,  or  Lagrangian,  form  of  mechanics.  One  source  of
confusion is that the symbol for action and the symbol for vector
potential  are  both  A.  In  what  follows,  we  will  use  A  for  the

action,  and  A
®

,  or  Ai ,  as  the  vector  potential.  Let’s  ignore  or  set
equal  to  zero  the  electric  field  and  concentrate  on  the  magnetic,
or Lorentz force. Begin with the action for a free particle with no
forces:

A = à
t0

t1LIx, x
× M d t

with

L =
m

2
Ix× iM2.

Here  i  refers  to  the  direction  of  space,  and  the  summation  sign
for summing over x, y, z has been left implicit. Get used to it.

What  can  we  add  to  the  action  or  to  the  Lagrangian  to
give  rise  to  a  Lorentz  force?  The  answer  is  not  obvious.
However,  we  know  that  whatever  the  additional  ingredient  is,  it
should  be  proportional  to  the  electric  charge,  and  it  should  also
involve the magnetic field in some form.

You  can  experiment  around  with  it  and  get  frustrated.

There is nothing you can do directly involving B
®

 that will give the
Lorentz force. The key is the vector potential. The simplest thing
we can do  with  the  vector  potential  is  to  dot  it  into  the  velocity
vector.  Remember  that  the  Lagrangian  involves  only  the
positions  and  the  velocities.  You  might  also  try  dot  products  of

the  position  vector  with  A
®

,  but  that  doesn’t  work  very  well.  So
let’s try adding to the Lagrangian the term
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(13)
e

c
v
®

× A
®HxL =

e

c
â

i

CHx× i AiHxLG.

The  reason  for  including  the  speed  of  light  is  that  it
occurs together with the charge in Lorentz force. Thus we try out
the action:

(14)A = à
t0

t1â
i

C m

2
Ix× iM2

+
e

c
x
×

i × AiHxLG d t .

Now  you  might  object  that  the  equation  of  motion  is  not
supposed  to  involve  the  vector  potential,  but  only  the  magnetic
field.  We know that  the  vector  potential  is  not  unique,  so  won’t
we  get  another  answer  if  we  make  a  gauge  transformation

A
®

' = A
®

+ Ñ
®

s? Let’s see what happens to the action if we do so.
The important part of the action is the term arising from

Eq. (13):

AL =
e

c
à

t0

t1â
i

Bx× i AiHxLF d t .

or, more explicitly,

AL =
e

c
à

t0

t1â
i

AiHxL d xi

d t
d t .

In  this  equation,  AL  is  the part  of  the action that  we are adding
to  try  to  account  for  the  Lorentz  force—hence  the  subscript  L.

Suppose we change A
®

 by adding Ñ
®

s. At first sight, it would seem
to change AL  by adding the term
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e

c
à

t0

t1â
i

¶ s

¶xi

d xi

d t
d t .

If you look at this carefully, you will see that it all boils down to a
simple  expression.  The  d t ’s  in  the  numerator  and  denominator
cancel:

e

c
â

i
à

t0

t1 ¶ s

¶xi
d xi .

And then the whole thing is just the difference between the value
of s  at the beginning and its value at the end of the trajectory. In
other words, the gauge transformation added a term s1 - s0  to the
action,  where  s0  and  s1  are  the  values  of  s  at  the  initial  and  final
positions  of  the  trajectory,  respectively.  In  other  words,  the
change in the action due to the gauge transformation is

(15)s1 - s0.

Does  such  a  change  make  any  difference  to  the  equations  of
motion? Let’s recall exactly what the action principle actually says.
Given  any  two  points  in  space  and  time,  x0, t0  and  x1, t1,  there
are many trajectories  that  connect  them, but  only one is  the true
trajectory  taken  by  a  particle.  The  true  trajectory  is  the  one  that
minimizes,  or  makes  stationary,  the  action.  So  what  we  do  is
explore  all  trajectories  that  connect  the  points  until  we  find  the
stationary-action  solution.  From  that  principle  we  derived  the
Euler-Lagrange equations of motion.

As we see in Eq. (15), a gauge transformation changes the
action,  but  only  if  we  vary  the  endpoints.  If  the  endpoints  are
kept fixed, the change in the action has no effect.  The stationary
point has to do only with changing the trajectory without moving
the  endpoints.  Though  the  action  changes,  the  equations  of
motion  do  not,  and  neither  do  the  solutions.  We  say  that  the
equations of motion and their solutions are gauge invariant. 

One  more  bit  of  jargon:  Since  there  are  many  possible
choices  of  vector  potentials  that  describe  the  same  physical
situation,  a  specific  choice  is  simply  called  a  gauge.  For  example,
Equations  (8)  and  Equations  (9)  are  two  different  gauges
describing  the  same  uniform  magnetic  field.  The  physical
principle that the result of any experiment should not depend on
the gauge choice is called gauge invariance.

202 The Theoretical Minimum



Does  such  a  change  make  any  difference  to  the  equations  of
motion? Let’s recall exactly what the action principle actually says.
Given  any  two  points  in  space  and  time,  x0, t0  and  x1, t1,  there
are many trajectories  that  connect  them, but  only one is  the true
trajectory  taken  by  a  particle.  The  true  trajectory  is  the  one  that
minimizes,  or  makes  stationary,  the  action.  So  what  we  do  is
explore  all  trajectories  that  connect  the  points  until  we  find  the
stationary-action  solution.  From  that  principle  we  derived  the
Euler-Lagrange equations of motion.

As we see in Eq. (15), a gauge transformation changes the
action,  but  only  if  we  vary  the  endpoints.  If  the  endpoints  are
kept fixed, the change in the action has no effect.  The stationary
point has to do only with changing the trajectory without moving
the  endpoints.  Though  the  action  changes,  the  equations  of
motion  do  not,  and  neither  do  the  solutions.  We  say  that  the
equations of motion and their solutions are gauge invariant. 

One  more  bit  of  jargon:  Since  there  are  many  possible
choices  of  vector  potentials  that  describe  the  same  physical
situation,  a  specific  choice  is  simply  called  a  gauge.  For  example,
Equations  (8)  and  Equations  (9)  are  two  different  gauges
describing  the  same  uniform  magnetic  field.  The  physical
principle that the result of any experiment should not depend on
the gauge choice is called gauge invariance.

Equations of Motion

Let’s  return  to  the  action,  Eq.  (14).  And  let’s  be  very  explicit
about the Lagrangian:

(16)L =
m

2
Jx× 2

+ y
× 2

+ z
× 2N +

e

c
Ix× Ax + y

×
A y + z

×
Az M.

Starting with x, the Lagrange equation of motion is

(17)p
×

x =
¶L

¶x
.

First  the canonical momenta: You might think that the momenta
are  just  the  usual  mass  times  velocity,  but  that’s  not  right.  The
correct  definition  is  that  the  momenta  are  the  derivatives  of  the
Lagrangian with respect to the components of velocity. This does
give  p = m v  with  the  usual  particle  Lagrangians,  but  not  with  a

magnetic field. From Eq. (16) we get

(18)px = m x
×

+
e

c
Ax .

This  may  worry  you.  It  indicates  that  the  canonical
momentum  is  not  gauge  invariant.  This  is  true,  but  we  are  not
finished yet.  We have two more things  to do.  We must  compute
the time derivative of px  and also compute the right-hand side of

Eq. (17). Maybe, if we are lucky, all the gauge-dependent stuff will
cancel.

The left-hand side of Eq. (17) is
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This  may  worry  you.  It  indicates  that  the  canonical
momentum  is  not  gauge  invariant.  This  is  true,  but  we  are  not
finished yet.  We have two more things  to do.  We must  compute
the time derivative of px  and also compute the right-hand side of

Eq. (17). Maybe, if we are lucky, all the gauge-dependent stuff will
cancel.

The left-hand side of Eq. (17) is

p
×

x = m ax +
e

c

d

d t
Ax

= m ax +
e

c

¶ Ax

¶x
x
×

+
¶ Ax

¶ y
y
×

+
¶ Ax

¶z
z
×

,

where ax  is the x component of acceleration.
The right-hand side side of Eq. (17) is:

¶L

¶x
=

e

c

¶ Ax

¶x
x
×

+
¶ A y

¶x
y
×

+
¶ Az

¶x
z
×

.

Now let’s combine the left and right sides:

(19)m ax =
e

c

¶ A y

¶x
-

¶ Ax

¶ y
y
×

+
e

c

¶ Az

¶x
-

¶ Ax

¶z
z
×
.

Equation (19) looks complicated, but note that the combinations
of derivatives

¶ A y

¶x
-

¶ Ax

¶ y

and

¶ Az

¶x
-

¶ Ax

¶z

are  things  we  saw  in  Equations  (7)—namely,  the  z  and  y

components  of  the  magnetic  field.  We  can  rewrite  Eq.  (19)  in  a
much simpler form:
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are  things  we  saw  in  Equations  (7)—namely,  the  z  and  y

components  of  the  magnetic  field.  We  can  rewrite  Eq.  (19)  in  a
much simpler form:

(20)m ax =
e

c
IBz y

×
- B y z

× M.

Take  a  careful  look  at  Eq.  (20).  You  should  be  impressed  by  a
number of things. First of all, the equation is gauge invariant: On
the  right-hand  side,  the  vector  potential  has  completely
disappeared  in  favor  of  the  magnetic  field.  The  left-hand  side  is
the  mass  times  the  acceleration—that  is  the  left-hand  side  of
Newton’s  equation.  In  fact,  Eq.  (20)  is  nothing  but  the  x
component of the Newton-Lorentz equation of motion, Eq. (12).

One  might  wonder  why  we  bothered  introducing  the
vector  potential  at  all.  Why  not  just  write  the  gauge-invariant
Newton-Lorentz  equation?  The  answer  is  that  we  can,  but  then
we lose  any  possibility  of  formulating  the  equations  as  an  action
principle,  or  as  Hamilton’s  equations  of  motion.  That  might  not
be  such  a  tragedy  for  the  classical  theory,  but  it  would  be  a
disaster for quantum mechanics.

The Hamiltonian

Before  discussing  the  Hamiltonian  of  a  charged  particle  in  a
magnetic  field,  let’s  go  back  to  the  definition  of  the  particle’s
momentum.  You  may  still  find  it  confusing.  The  reason  is  that
there  are  two  separate  concepts:  mechanical  momentum  and
canonical  momentum.  Mechanical  momentum  is  what  you  learn
about in elementary mechanics (Momentum equals mass times velocity)
and  in  advanced  mechanics  (Canonical  momentum  equals  derivative  of
the  Lagrangian  with  respect  to  velocity).  In  the  simplest  situations
where  the  Lagrangian  is  just  the  difference  of  kinetic  and
potential  energy,  the  two  kinds  of  momentum  are  the  same.

That’s because the only dependence on velocity is 1
2

m v2.

But  once the  Lagrangian  gets  more  complicated,  the  two
kinds  of  momentum  may  not  be  the  same.  In  Eq.  (18)  we  see
such  an  example.  The  canonical  momentum  is  the  mechanical
momentum plus  a  term proportional  to  the  vector  potential.  We
can write it in vector notation:
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(21)p
®

= m v
®

+
e

c
A
®HxL.

The  mechanical  momentum  is  not  only  familiar;  it  is  gauge
invariant.  It  is  directly  observable,  and  in  that  sense  it  is  “real.”
The canonical momentum is unfamiliar and less “real”; it changes
when you make a gauge transformation.  But  whether  or  not  it  is
real,  it  is  necessary  if  you  want  to  express  the  mechanics  of
charged particles in Lagrangian and Hamiltonian language.

To pass to the Hamiltonian, we recall the definition

H = â
i

I pi q
×

iM - L,

which in this case is

(22)H = â
i

; pi x
×

i - C m

2
Ix× iM2

+
e

c
x
×

i × AiHxLG?.

Let’s  work  it  out.  First  we  will  need  to  get  rid  of  the  velocities;
the Hamiltonian is always thought of as a function of coordinates
and momenta.  That’s  easy.  We just  solve  Eq.  (21)  for  velocity  in
terms of p:
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(23)x
×

i =
1

m
C pi -

e

c
AiHxLG.

Now  wherever  you  see  a  velocity  component  in  Eq.  (22),
substitute  Eq.  (23)  and then  do  a  little  rearranging.  Here  is  what
you will get:

(24)H = â
i

1

2 m
C pi -

e

c
AiHxLGC pi -

e

c
AiHxLG .

Exercise   4:  Using  the  Hamiltonian,  Eq.  (24),  work  out
Hamilton’s  equations  of  motion  and  show that  you  just
get back the Newton-Lorentz equation of motion. 

If  you  carefully  look  at  Eq.  (24),  you  will  see  something  a  little

surprising.  The  combination  B pi -
e
c

AiHxLF  is  the  mechanical

momentum m vi . The Hamiltonian is nothing but

H =
1

2
m v2.

In  other  words,  its  numerical  value  is  the  same  as  the  naive
kinetic  energy.  That  proves  (among other  things)  that  the energy
is  gauge  invariant.  Since  it  conserved,  the  naive  kinetic  energy  is
also  conserved,  as  long  as  the  magnetic  field  does  not  change
with  time.  But  that  does  not  mean  the  particle  motion  does  not
sense  the  magnetic  field.  If  you  want  to  use  the  Hamiltonian  to
find  the  motion,  you  must  express  it  in  terms  of  the  canonical
momentum, not the velocity, and then use Hamilton’s equations.
Alternatively,  you  can  work  with  velocities  and  use  the
Lagrangian form of the equations, but in that case the Lagrangian
is  not  the  naive  kinetic  energy.  In  either  case,  if  you  work  it  all
out,  you  will  discover  that  the  charged  particle  experiences  a
gauge-invariant Lorentz magnetic force.
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Motion in a Uniform Magnetic Field

Motion in a uniform magnetic field is easy enough to solve, and it
illustrates  a  lot  of  the  principles  we  have  been  discussing.  Let’s
take  the  field  to  lie  in  the  z direction  and  to  have  magnitude  b.

This  is  the  situation  described  in  Equations  (6,  7,  8).  The  choice
between the vector potentials in Equations (7, 8) is an example of
the  ambiguity  associated  with  gauge  transformations.  Let’s  first
choose  Equations  (7)  and  write  the  Hamiltonian,  Eq.  (24),  using

HAx = 0, A y = b x, Az = 0M. We get

H =
1

2 m
CH pxL2 + I pz M2 + K p y -

e

c
b xO2G.

As  always,  the  first  thing  to  do  is  to  look  for  conservation  laws.
We  already  know  one:  energy  conservation.  As  we’ve  seen,  the

energy is the old-fashioned kinetic energy 1
2

m v2.  It  follows  that

the magnitude of the velocity is constant.
Next, notice that the only coordinate that appears in H  is

x.  This  means  that  when we work  out  Hamilton’s  equations,  we
will  find  that  px   is  not  conserved  but  that  both  pz  and  p y   are

conserved.  Let’s  see  what  the  implications  are.  First  the  z

component.  Since  Az = 0,  pz = m vz ,  and  the  conservation  of

pz  tells  the  familiar  story  that  the  z  component  of  velocity  is

constant.
Next look at the conservation of p y .  This  time p y  is  not

equal to m v y  but, rather, to m v y +
e
c

b x. The conservation of p y

then tells us that
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pz  tells  the  familiar  story  that  the  z  component  of  velocity  is

constant.
Next look at the conservation of p y .  This  time p y  is  not

equal to m v y  but, rather, to m v y +
e
c

b x. The conservation of p y

then tells us that

m a y +
e

c
b vx = 0,

or

(25)a y = -
e b

m c
vx .

Notice  that  the  conservation  of  p y  does  not  imply  that  the  y

component of velocity is conserved.
What  about  px?  It  does  not  seem to  be  conserved  since

H  has  explicit  dependence  on  x.  We  could  use  Hamilton’s
equations to determine the x  component of acceleration, but I’m
going  to  do  it  another  way.  Instead  of  using  Equations  (8)  I’m
going  to  change  the  gauge  in  midstream  and  use  Equations  (7).
Remember  that  the physical  phenomena should  not  change.  The
new Hamiltonian that goes with Equations (7) is,

H =
1

2 m
CK px +

e

c
b yO2

+ I p yM2 + I pz M2G.

Now the Hamiltonian does not  depend on x,  which implies  that
px  is  conserved.  How can that be? We previously  showed the x-

component  of  momentum  px  is  conserved  when  we  used

Equations  (8).  The  answer  is  that  when  we  make  a  gauge
transformation the components of p change. In the two cases, px

does not have the same meaning.
Let  us  see the implication of  px  conservation  in the new

gauge.  Using  Equations  (7)  we  find  that  px = m vx -
e
c

b y.  Thus

the conservation of px  is expressed as
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(26)ax =
e b

m c
v y .

By now you may have already realized that Eq. (25) and Eq. (26)
are  familiar.  They  are  the  Newton-Lorentz  equations  for  motion
in a uniform magnetic field.

Exercise   5:  Show that  in  the x, y  plane,  the solution  to

Eq. (25)  and the solution to Eq. (26)  are a circular  orbit
with the center of the orbit being anywhere on the plane.
Find the radius of the orbit in terms of the velocity. 

Gauge Invariance

The reason why I left magnetic forces for the last lecture is that I
want  you  to  remember  the  lessons  when,  in  future  study,  we
come  to  quantum  mechanics  and  field  theory.  Gauge  fields  and
gauge  invariance  are  not  minor  artifacts  of  writing  the  Lorentz
force in Lagrangian form.  They are the central  guiding principles
that  underlie  everything,  from  quantum  electrodynamics  to
general  relativity  and  beyond.  They  play  a  leading  role  in
condensed matter physics—for example, in explaining all sorts of
laboratory  phenomena  such  as  superconductivity.  I  will  close
these lectures on classical mechanics by reviewing the meaning of
the  gauge  idea,  but  its  real  importance  will  become  clear  only  in
later lectures.

The  simplest  meaning  of  a  gauge  field—the  vector
potential is the most elementary example—is that it is an auxiliary
device  that  is  introduced  to  make  sure  certain  constraints  are

satisfied. In the case of a magnetic field, not any B
®HxL is allowed.

The constraint is that B
®HxL should have no divergence:
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satisfied. In the case of a magnetic field, not any B
®HxL is allowed.

The constraint is that B
®HxL should have no divergence:

Ñ
®

× B
®

= 0

To  ensure  that,  we  write  the  magnetic  field  as  the  curl  of

something—A
®HxL—because  curls  automatically  have  no

divergence.  It’s  a  trick  to  avoid  having  to  worry  explicitly  about

the fact that B
®HxL is constrained.

But  we  soon  discover  that  we  cannot  get  along  without

A
®HxL.  There  is  no  way  to  derive  Lorentz’s  force  law  from  a
Lagrangian  without  the  vector  potential.  That  is  a  pattern:  To
write  the  equations  of  modern  physics  in  either  Lagrangian  or
Hamiltonian form, auxiliary gauge fields have to be introduced.

But  they  are  also  nonintuitive  and abstract.  Despite  their
being  indispensable,  you  can  change  them  without  changing  the
physics.  Such  changes  are  called  gauge  transformations,  and the  fact
that  physical  phenomenal  do  not  change  is  called  gauge  invariance.
Gauge  fields  cannot  be  “real,”  because  we  can  change  them
without  disturbing  the  gauge  invariant  physics.  On  the  other
hand, we cannot express the laws of physics without them.

I  am  not  about  to  give  you  a  sudden  insight  that  will
resolve this tension. I will just say that’s the way it is: The laws of
physics  involve  gauge  fields,  but  objective  phenomena  are  gauge
invariant.

Good Bye for Now

We  are  now  finished  with  classical  mechanics.  If  you  have
followed  along,  you  know  the  Theoretical  Minimum—all  you
need  to  know about  classical  mechanics  to  move  on  to  the  next
thing. See you in Quantum Mechanics!
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Appendix 1: Central Forces and 
Planetary Orbits

Lenny stooped and peered through the eyepiece of the telescope.
It  was  the  first  time  he  had  ever  done  that.  He  saw the  rings  of
Saturn  and  whistled  at  their  beauty.  “George,  have  you  seen  the
rings?”

George nodded and said, “Yup, I seen ’em.”
Lenny looked up and pressed his  friend.  “Where do they

come from?”
George said, “It’s like the Earth goin’ round the Sun.”
Lenny nodded. “How does it go around?”

The Central Force of Gravity

A  central  force  field  is  a  force  that  points  toward  a  center—in
other  words,  toward a point  of  space (see Figure  1).  In  addition,
for a force to be a central force, the magnitude of the force must
be the same in every direction.

Figure 1: A central force.

Other  than  the  obvious  symmetry—rotational  symmetry—there
is  nothing  very  special  about  central  forces  from  a  mathematical
viewpoint.  But  their  role  in  physics  and in the history  of  physics
is  very  special.  The  first  problems  solved  by  Newton—the
problems  of  planetary  orbits—were  central  force  problems.  The
motion  of  an  electron  orbiting  a  hydrogen  nucleus  is  a  central
force problem. Two atoms orbiting one another to form a simple
molecule can be reduced to a central force problem in which the
center is  the center of  mass.  Since there was not  enough time to
cover this subject in the lectures, we’ll add it here as a supplement.

Let’s  focus  on  the  motion  of  the  Earth  as  it  orbits  the
much heavier Sun. According to Newton’s laws, the force exerted
by the Sun on the Earth is equal and opposite  to that exerted by
the Earth on the Sun.  Moreover,  the direction of  those  forces  is
along  the  line  connecting  the  two  bodies.  Because  the  Sun  is  so
much heavier than the Earth, the motion of the Sun is negligible,
and it can be considered to be at a fixed location. We can choose
our  coordinates  so  that  the  Sun  is  at  the  origin,  x = y = z = 0.

The Earth,  by contrast,  moves in an orbit  about the origin.  Let’s

denote  the  location  of  the  Earth  by  the  vector  r
®

 with
components  x, y, z.  Since  the  Sun  is  located  at  the  origin,  the

force  on  the  Earth  points  toward  the  origin,  as  shown  in  Figure
1.  Moreover,  the  magnitude  of  the  force  depends  only  on  the
distance  r  from  the  origin.  A  force  with  these  properties—
pointing toward the origin and depending only on the distance—
is called a central force.

Let’s rewrite the unit vector from Interlude 1:
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rï =
r
®

r
.

In equation form, the definition of a central force is
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F
®

= f J r
®N rï,

where f J r
®N  determines two things.  First,  the magnitude of f J r

®N
is  the  magnitude  of  the  force  when  the  Earth  is  at  distance  r .

Second, the sign of f J r
®N determines whether the force is toward

or  away  from  the  Sun—in  other  words,  whether  the  force  is

attractive  or  repulsive.  In  particular,  if  f J r
®N  is  positive  the  force

is away from the Sun (repulsive),  and if  it  is  negative the force is
toward the Sun (attractive).

The  force  between  the  Sun  and  the  Earth  is  of  course
gravitational.  According  to  Newton’s  law  of  gravitation,  the
gravitational  force  between  two  objects  of  mass  m1  and  m2  has
the following properties.

N1:  The  force  is  attractive  and  proportional  to  the  product  of  the
objects’  masses  and  a  constant  called  G.  Today  we  refer  to  G  as
Newton’s constant. Its value is G » 6.673 m3 kg-1 s-2.

N2:  The  force  is  inversely  proportional  the  square  of  the  distance
between the masses.

To summarize, the force is attractive and has magnitude 
G m1 m2

r2 .

In other words, the function f J r
®N is given by

f J r
®N =

G m1 m2

r2
,

and
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F
®

grav = -
G m1 m2

r2
rï.

For the case of the Earth-Sun system let’s denote the Sun’s mass
by M and the Earth’s mass by m. The force on the Earth is

F
®

grav = -
G M m

r2
rï.

The equation of motion for the Earth’s orbit is the usual F = m a,
or, using the gravitational force,

m
d2 r

®

d t2
= -

G M m

r2
rï.

Notice  an  interesting  fact:  The  mass  of  the  Earth  cancels  from
both  sides  of  the  equation,  so  the  equation  of  motion  does  not
depend on the mass of the Earth:

(1)
d2 r

®

d t2
= -

G M

r2
rï.

An  object  of  very  different  mass,  such  as  a  satellite,  could  orbit
the  Sun  in  the  same  orbit  as  the  Earth.  One  caveat  about  this
fact:  It  is  true  only  if  the  Sun  is  so  massive,  compared  with  the
Earth or satellite, that its motion can be ignored.

Gravitational Potential Energy

The  gravitational  force  can  be  derived  from  a  potential  energy
function.  Recall  that  the  force  associated  with  a  potential  energy
is minus the gradient of the potential:
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F = -ÑV .

It’s  not  too  hard  to  guess  the  form  of  V  for  the  gravitational
case.  First  of  all,  since  the  force  is  proportional  to  the  constant
G M m, one expects the potential energy also to have this factor.

Next,  because  the  magnitude  of  the  force  only  depends
on the distance r ,  one may expect the potential  energy V Hr L  also
to depend only on r .  Finally,  since we have to differentiate  V Hr L
to get the force,  and since the force is proportional  to 1 � r2,  the

potential energy must be proportional to -1 � r . Thus it is natural
to try

V Hr L = -
G M m

r
.

In fact, this is exactly right.

The Earth Moves in a Plane

Earlier,  we  mentioned  that  the  central  force  problem  has  a
symmetry.  You  probably  recognize  it  as  rotational  symmetry
about  the  origin.  The  implication  of  the  symmetry,  explained  in
Lecture  7,  is  the  conservation  of  angular  momentum.  Suppose

that at some instant  the earth has location r
®

 and velocity v
®

.  We
can  place  these  two  vectors  and  the  position  of  the  Sun  in  a
plane—the momentary plane of the Earth’s orbit.

The  angular  momentum  vector  L
®

 is  proportional  to  the

cross  product  r
®

� v
®

,  so  it  is  perpendicular  to  both r
®

 and v
®

 (see
Figure  2).  In  other  words,  the  angular  momentum  is
perpendicular  to  the  plane  of  the  orbit.  This  is  a  powerful  fact
when  combined  with  the  conservation  of  angular  momentum.

The conservation tells  us  that  the vector L
®

 never changes.  From
that  we  conclude  that  the  orbital  plane  never  changes.  To  put  it
simply,  the  Earth’s  orbit  and  the  Sun  permanently  lie  in  a  fixed
plane  that  does  not  vary.  Knowing  this,  we  may  rotate  our
coordinates  so  that  the  orbit  is  in  the  x, y  plane.  The  entire

problem  is  then  two-dimensional,  the  third  coordinate  z  playing

no role.
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®

 (see
Figure  2).  In  other  words,  the  angular  momentum  is
perpendicular  to  the  plane  of  the  orbit.  This  is  a  powerful  fact
when  combined  with  the  conservation  of  angular  momentum.

The conservation tells  us  that  the vector L
®

 never changes.  From
that  we  conclude  that  the  orbital  plane  never  changes.  To  put  it
simply,  the  Earth’s  orbit  and  the  Sun  permanently  lie  in  a  fixed
plane  that  does  not  vary.  Knowing  this,  we  may  rotate  our
coordinates  so  that  the  orbit  is  in  the  x, y  plane.  The  entire

problem  is  then  two-dimensional,  the  third  coordinate  z  playing

no role.

L
®

r
®

v
®

Figure 2: The relationship among the angular momentum 

L
®

, the position vector r
®

, and the velocity v
®

.

Polar Coordinates

We  could  work  with  the  Cartesian  coordinates  x, y,  but  central

force problems are much easier to solve in polar coordinates r , Θ:

r = x2 + y2

cos Θ =
x

r

In  polar  coordinates  the  kinetic  energy  of  the  earth  is  simple
enough:
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In  polar  coordinates  the  kinetic  energy  of  the  earth  is  simple
enough:

(2)T =
m

2
r
×2

+ r2 Θ
× 2

.

The potential energy is even simpler—it does not involve Θ at all:

(3)V Hr L = -
G M m

r
.

Equations of Motion

As is usually the case, the easiest route to the equations of motion
is  through  the  Lagrangian  method.  Recall  that  the  Lagrangian  is
the  difference  of  the  kinetic  and  potential  energies,  L = T - V .
Using Eq. (2) and Eq. (3), the Lagrangian in polar coordinates is

(4)L =
m

2
r
×2

+ r2 Θ
× 2

+
G M m

r
.

The equations of motion,

d

d t

¶L

¶ r
×

=
¶L

¶ r

d

d t

¶L

¶Θ
×

=
¶L

¶Θ
,

take the explicit form

(5)r
××

= r Θ
×

-
G M

r

and
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(6)
d

d t
Km r2 Θ

× O = 0.

This  last  equation  has  the  form  of  a  conservation  law.  Not
surprisingly,  it  is  conservation  of  angular  momentum.  (To  be
precise,  it  is  the  conservation  of  the  z  component  of  angular

momentum.) It is traditional to denote the angular momentum by
the symbol L, but we are using that as the Lagrangian, so we will
use  pΘ  instead.  If  we  know pΘ  at  any  particular  instant,  then  we

know it for all time. We may write

(7)m r2 Θ
×

= pΘ

and just treat pΘ as a known constant.

This enables us to express the angular velocity in terms of
the  distance  of  the  Earth  from  the  Sun.  We  just  solve  the

equation for Θ
×

:

(8)Θ
×

=
pΘ

m r2
.

We will  come  back  to  this  relation  between  angular  velocity  and
radial distance, but first let’s return to the equation for r , namely 

(9)m r
××

= m r Θ
× 2

-
G M m

r2
.

In Eq. (9) the angular velocity appears, but we can use Eq. (8) to
replace it:

(10)m r
××

=
pΘ

2

m r3
-

G M m

r2
.

The equation for  r  has  an interesting  interpretation.  It  looks  like
the  equation  for  a  single  coordinate  r  under  the  influence  of  a
combined “effective” force:
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The equation for  r  has  an interesting  interpretation.  It  looks  like
the  equation  for  a  single  coordinate  r  under  the  influence  of  a
combined “effective” force:

(11)Feffective =
pΘ

2

m r3
-

G M m

r2
.

The term - G M m

r2  is  just  the gravitational  force,  but at first  sight

the second term may be a surprise.  It  is,  in fact,  nothing  but  the
fictitious centrifugal force experienced by any particle that has an
angular motion about the origin.

It’s  useful  to  pretend  that  Eq.  (11)  really  does  describe  a
particle  moving  under  a  total  force  that  includes  both  the  real
gravitational  force  and  the  centrifugal  force.  Of  course,  for  each
value  of  the  angular  momentum,  we  must  readjust  pΘ,  but  since

pΘ is conserved, we may regard it as a fixed number.

Given  the  effective  force,  one  can  also  construct  an
effective  potential  energy  function  that  includes  the  effect  of
gravity and the effect of centrifugal force:

(12)Veffective =
pΘ

2

2 m r2
-

G M m

r
.

You can easily check that

Feffective = -
d Veffective

d r
.

For all practical purposes, we can pretend the r  motion is
just  that  of  a  particle  whose  kinetic  energy  has  the  usual  form,

m r
×2

2
,  whose  potential  energy  is  Veffective,  and  whose  Lagrangian

is
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For all practical purposes, we can pretend the r  motion is
just  that  of  a  particle  whose  kinetic  energy  has  the  usual  form,

m r
×2

2
,  whose  potential  energy  is  Veffective,  and  whose  Lagrangian

is

(13)Leffective =
m r

×2

2
-

pΘ
2

2 m r2
+

G M m

r
.

Effective Potential Energy Diagrams

In getting a feel  for  a problem,  it  is  often a good idea to make a
graph  of  the  potential  energy.  For  example,  the  equilibrium
points  (where the system may be at rest)  can be identified as the
stationary  points  (minima,  maxima)  of  the  potential.  In
understanding  central  force  motion,  we  do  exactly  the  same,
except  that  we  apply  it  to  the  effective  potential.  Let’s  first  plot
the two terms in Veffective  separately, as shown in Figure 3. Note
that  the  two  terms  are  of  opposite  sign;  the  centrifugal  term  is
positive  and  the  gravitational  term  negative.  The  reason  is  that
the  gravitational  force  is  attractive,  whereas  the  centrifugal  force
pushes the particle away from the origin.

V Hr L =
pΘ

2

2 m r2

V Hr L = -
G m

r

r

V
HrL

Figure 3: The potential energy diagram for the centrifugal 
and gravitational terms.

Near  the  origin  the  centrifugal  term  is  the  most
important,  but  at  large  values  of  r  the  gravitational  term has  the
larger  magnitude.  When  we  combine  them,  we  get  a  graph  of
Veffective that looks like Figure 4.
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Near  the  origin  the  centrifugal  term  is  the  most
important,  but  at  large  values  of  r  the  gravitational  term has  the
larger  magnitude.  When  we  combine  them,  we  get  a  graph  of
Veffective that looks like Figure 4.

V Hr L =
pΘ

2

2 m r2
-

G m

r

r

V
HrL

Figure 4: The potential energy diagram for the combination 
of centrifugal and gravitational terms.

Note  that  when  the  two  terms  are  combined,  the  graph  has  a
minimum.  That  may  seem  odd;  we  don’t  expect  an  equilibrium
point  where  the  Earth  can stand  still.  But  we have  to  remember
that  we  are  discussing  only  the  behavior  of  r  and  ignoring  the
angular  coordinate  Θ.  The  point  is  that  for  each  angular
momentum,  there  are  orbits  that  maintain  a  constant  radial
distance  while  moving  around  the  Sun.  Such  orbits  are  circular.
On  the  graph  of  Veffective  a  circular  orbit  is  represented  by  a
fictitious particle sitting at rest at the minimum.

Let’s compute the value of r  at the minimum. All we have
to  do  is  differentiate  Veffective  and  set  the  derivative  equal  to
zero. It’s an easy calculation that I will leave to you. The result is
that the minimum occurs at
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(14)r =
pΘ

2

G M m2
.

Equation (14) yields the radius of the Earth’s orbit (assuming it is
circular, which is not quite right) given its angular momentum.

Kepler’s Laws

Tycho  Brahe  was  a  sixteenth-century  Danish  astronomer  before
the  age  of  telescopes.  With  the  help  of  a  long  rod  and  some
instruments  to  measure  angles,  he  made  the  best  tables  and
records of the motion of the Solar System before telescopes were
invented.  As  a  theoretician,  he  was  somewhat  confused.  His
legacy was his tables.

It  was  Tycho’s  assistant  Johannes  Kepler  who  put  the
tables  to  good  use.  Johannes  Kepler  took  those  records  and  fit
the  observed  data  to  simple  geometric  and  mathematical  facts.
He had no idea why the planets moved according to his laws—by
modern standards,  his  theories  of  why  were at  best,  odd—but he
got the facts right.

Newton’s  great  achievement—in  a  sense  the  start  of
modern  physics—was  to  explain  Kepler’s  laws  of  planetary
motion  through  his  own  laws  of  motion,  including  the  inverse-
square law of gravity. Let’s recall Kepler’s three laws.

K1: The orbit of every planet is an ellipse with the Sun at one of the
two foci.

K2:  A  line  joining  a  planet  and  the  Sun  sweeps  out  equal  areas
during equal intervals of time.

K3:  The  square  of  the  orbital  period  of  a  planet  is  directly
proportional to the cube of the radius of its orbit.
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K3:  The  square  of  the  orbital  period  of  a  planet  is  directly
proportional to the cube of the radius of its orbit.

Begin  with  K1,  the  ellipse  law.  Earlier  we  explained  that  circular
orbits  correspond to being in equilibrium at the minimum of the
effective  potential.  But  there  are  motions  of  the  effective  one-
dimensional system in which it oscillates back and forth near, but
not at, the minimum. A motion of this type would have the Earth
periodically  getting  closer  to  and  farther  from  the  Sun.
Meanwhile, because it has angular momentum L,  the Earth must
also  be  moving  around  the  Sun.  In  other  words  the  angle  Θ  is
increasing  with  time.  The  resulting  trajectory,  in  which  the
distance  oscillates  and  the  angular  position  changes,  is  elliptical.
Figure 5 shows just such an elliptical orbit. If you follow the orbit
and  keep  track  only  of  the  radial  distance,  the  position  of  the
Earth periodically moves in and out as if it were oscillating in the
effective potential.

Figure 5: The elliptical orbit of the Earth around the Sun.

To  prove  the  orbit  is  exactly  an  ellipse  is  a  bit  difficult,  and  we
will not prove it now.

Let’s  take another  look at  the motion of  a particle  in the
effective potential. Imagine a particle with so much energy that it
would completely escape from the dip in the potential  energy. In
such an orbit the particle comes in from infinity, bounces off the
potential  near  r = 0,  and  goes  back  out,  never  to  return.  Such
orbits certainly exist; they are called unbounded hyperbolic orbits.

Now let’s  move on to K2. According to Kepler’s  second
law,  as  the  radial  vector  sweeps  out  the  ellipse,  the  area  that  it
sweeps  per  unit  time  is  always  the  same.  This  sounds  like  a
conservation  law,  and  indeed  it  is—the  conservation  of  angular
momentum. Go back to Eq. (7) and divide it by the mass m:
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To  prove  the  orbit  is  exactly  an  ellipse  is  a  bit  difficult,  and  we
will not prove it now.

Let’s  take another  look at  the motion of  a particle  in the
effective potential. Imagine a particle with so much energy that it
would completely escape from the dip in the potential  energy. In
such an orbit the particle comes in from infinity, bounces off the
potential  near  r = 0,  and  goes  back  out,  never  to  return.  Such
orbits certainly exist; they are called unbounded hyperbolic orbits.

Now let’s  move on to K2. According to Kepler’s  second
law,  as  the  radial  vector  sweeps  out  the  ellipse,  the  area  that  it
sweeps  per  unit  time  is  always  the  same.  This  sounds  like  a
conservation  law,  and  indeed  it  is—the  conservation  of  angular
momentum. Go back to Eq. (7) and divide it by the mass m:

(15)r2 Θ
×

=
pΘ

m
.

Imagine  the  radial  line  as  it  sweeps  out  an  area.  In  a  small  time
∆ t , the area changes by ∆ Θ.  

Figure 6: The area swept out by the line connecting the 
Earth to the Sun in a short time ∆ t .

The small triangle swept out in Figure 6 has area
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∆ A =
1

2
r2 ∆ Θ.

You can check this using the fact that the area of a triangle is one-
half the base Hr L times the height Hr ∆ΘL. If we divide by the small
time interval ∆ t , we get

d A

d t
=

r2

2
Θ
×

.

But now we use angular momentum conservation in the form of
Eq. (15), and we get the final equation

(16)
d A

d t
=

pΘ

2 m
.

Since pΘ  (and also m) do not vary, we see that the rate of swept-

out  area is  constant,  and,  moreover,  it  is  just  proportional  to the
angular momentum of the orbit.

Finally,  we  come to  K3:  The  square  of  the  orbital  period  of  a
planet is directly proportional to the cube of the radius of its orbit.

Kepler’s formulation was very general, but we will work it
out  only  for  circular  orbits.  There  are  a  number  of  ways  we  can
do this, but the simplest is just to use Newton's law, F = m a. The
force  on  the  orbiting  Earth  is  just  the  gravitational  force,  whose
magnitude is

F = -
G M m

r2
.

On the other hand, in Lecture 2 we calculated the acceleration
of an object moving in a circular orbit,
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(17)a = Ω2 r

where Ω is the angular velocity.

Exercise  1:  Show that  Eq.  (17),  above,  is  a  consequence
of Equations (3) from Lecture 2.

Newton's law becomes

G M m

r2
= m Ω2 r .

We can easily solve this for Ω2:

Ω2 =
G M

r3
.

The last  step is  to note that the period of the orbit—the time to
make  one  circuit—is  simply  related  to  the  angular  velocity.
Denoting the period by the Greek letter tau, Τ, we have

Τ =
1

2 ΠΩ
.

Traditionally  we  would  use  T  for  the  period,  but  we  are  already
using T  for the kinetic energy. Putting it all together we get

Τ2 =
1

4 Π G M
r3.

Indeed,  the  square  of  the  period  is  proportional  to  the  cube  of
the radius.
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Acceleration
of circular orbit, 45–46
due to gravity, 71–72
mass, force, and, 63–66, 70
of particle, 40–41, 42, 43–44, 

45–46
position and, 44, 46
state-space of system of particles

and, 88, 89
units of, 68

Action, 108–110, 115
reaction and, 92–94, 139
total, 112
See also Principle of least action

Active change of coordinates, 131
Addition, of vectors, 24–25, 26–27
Advanced mechanics, 105–107
Angle, measure of, 19–20
Angular frequency, 45
Angular momentum, 124–125

conservation of, 140, 143–144,
219, 225–226

Earth’s orbit and, 216–217
Poisson brackets and, 178–181,

182–187
Angular velocity, radial distance and,

219–221
Antisymmetry of Poisson Brackets,

174
Aristotle’s (false) law of motion, 

58–63
Atomic energy, 103, 104
Axes, 15–16

Basis vectors, 25–26
Binomial theorem, 31, 32
Brahe, Tycho, 223

Calculus
fundamental theorem of, 50–53
of variations, 110
See also Differential calculus;

Integral calculus
Canonical momentum, 203–204,

205–207
Carat, 25
Cartesian coordinates, 15–19, 

121–122
vectors for, 23–24, 25–27

Central forces, 212–215
equations of motion and, 

218–221
gravitational potential energy and,

215–216
planetary orbits and, 213–215
polar coordinates and, 217–218

Centrifugal force, 120
in effective potential energy

diagrams, 221, 222
effective potential energy function

and, 220, 221
Chain rule, 35–36
Chaos, 14
Charges, 85–86
Chemical energy, 103, 104
Circle, right triangle drawn in, 21–22
Circular motion, 44–46
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Circular orbit, 222–223, 226–227
velocity and acceleration of, 45–46

Classical mechanics, 1–2
Classical physics

assumptions about time in, 17–18
cycles and conservation laws and,

12–13
defined, 1–2
dynamical systems with infinite

number of states and, 10–12
limits of precision and, 13–14
minus-first law and, 8–10
systems and state-space and, 2–8

Closed systems, 2
Commutator, 173
Components, of vectors, 26
Condensed matter physics, 210
Configuration space, 91
Conjugate momentum, 123–125,

126–127
Conservation, symmetry and, 

178–181, 187–189
Conservation laws

cycles and, 12–13
for simple systems, 128–130
symmetry and, 139–144

Conservation of angular momentum,
140, 216–217, 219, 225–226

Conservation of energy, 101–103,
145–152

Conservation of information, 9–10
Conservation of momentum, 92–94,

139–140
Constant, derivative of a, 34
Continuous evolution, 3
Continuous transformations, 134, 137
Convergence, 165
Coordinates, 15–19

Cartesian, 15–17, 121–122

cyclic, 125–127
generalized, 121–125
polar, 124, 217–218

Coordinate system, Cartesian, 
15–17

Coordinate transformation, 117–120,
130–135

Coriolis force, 120–121, 199
Cosine (cos), 20, 21, 23
Cross product, 27, 193
Curl, 193–194
Cycles, 5–6

conservation laws and, 12–13
Cyclic coordinates, 125–127

Definite integral, 49
Degrees of freedom, 4–5

Euler-Lagrange equation for a
single, 110–111

Del, 191–194
Delta (Δ), 30
Derivatives

calculating, 31–36
defined, 30–31
of a constant, 34
integrals and, 50–53
of powers, 32–34
rules for, 33–36
second, 79, 82, 83–84
second-order partial, 76
special cases, 33–34
time, 38–39

Determinant, 82
Deterministic, 2

dynamical laws and, 8–9
laws of classical physics and, 5

Differential calculus, 29–37
partial derivatives and

multivariable, 74–84
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Differential equations
first-order, 60–63
second-order, 69–72

Direction of time, 17
Displacement, 23, 38–39
Distance

angular velocity and radial, 
219–221

coordinates and, 16
electric and gravitational forces and,

85–86
Divergence, 165

flow and, 165–167
of magnetic fields, 195
of vector field, 167, 192
curl and, 194

Dot product, 27
Double pendulum, angular

momentum and, 140–144
Drag force, 85
Dynamical laws, 3–8

reversible and deterministic, 8–10
Dynamical systems, 3

with infinite number of states, 
10–12

Dynamics
Aristotle’s law of motion, 58–63
mass, acceleration, and force, 

63–66
Newton’s equations, 69–73

Earth, angular velocity and distance
from Sun, 219–220

Earth’s orbit, 224
central forces and, 213–215
equation of motion for, 215
gravitational force and, 214–215
as movement in a plane, 216–217
radius of, 222–223

Effective potential energy diagrams,
221–223

Electric field, 198
Electric forces, 85–86
Electromagnetic energy, 103–104
Electrostatic energy, 103, 104
Ellipse law, 223–225
Elliptical orbit, 223–225
Energy, 95–104

atomic/nuclear, 103, 104
chemical energy, 103, 104
conservation of (see Energy

conservation)
electrostatic, 103, 104
heat, 103–104
kinetic, 97, 101–102
magnetic, 103, 104
mechanical, 103
multiple dimensions and, 99–102
potential, 95–99
radiation, 103, 104
rate of change of, 97–99
total, 97

Energy conservation, 97–99, 147–152
motion in uniform magnetic field

and, 208–210
phase space fluid and, 162–164
symmetry and, 145–152

Equations of motion, 203–205, 
218–221

determining trajectories from, 
105–108

for Earth’s orbit, 215
generalized coordinates and, 

121–125
Lagrange and the vector potential,

203–205
Newton-Lorentz, 204–205, 207, 209
Newton’s, 69–73, 86–88
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Euler-Lagrange equations, 110–114,
202

conjugate momentum and, 
123–125

derivation of, 111–114
use of, 116–121

Fictitious forces, 118, 199
Fields

electric, 198
gauge, 210–211
magnetic (see Magnetic fields)
scalar, 190–191, 194
vector (see Vector fields)

First-order differential equations, 
60–63

Flow
divergence and, 165–167
in phase space, 162–164
stationary, 166

Forces, 58–59, 96
central (see Central forces)
centrifugal (see Centrifugal force)
on charged particle, 198–199
Coriolis, 120–121, 199
defining, 63–66
electric, 85–86
fictitious, 199
friction, 58, 63, 85
fundamental, 85–86
gravitational (see

Gravity/gravitational force)
Lorentz, 198–199
magnetic (see Magnetic forces)
mass, acceleration, and, 63–67, 70
nonconservative, 100
potential energy and, 95–99
types of, 85
units of, 68–69

velocity and, 58–60
velocity-dependent, 198

Friction, 58, 63, 85
Functional, 110
Functions

graphing, 18–19
implicit, 35
minimizing, 76–79
trigonometric, 19–23

Fundamental forces, 85–86
Fundamental theorem of calculus, 

50–53

Gauge, 197, 203
Gauge fields, 210–211
Gauge invariance, 203, 210–211
Gauge invariant, 198, 203–205, 208
Gauge transformation, 197, 201, 202,

211
Generalized coordinate system, 

121–125
Generalized coordinates, 121–125
Generalized momentum, 123–125
Generator, 183, 188
Gibbs, Josiah Willard, 169
Gibbs-Liouville theorem, 169
Global minimum, 77
Gradient, 191–192
Graph

of functions, 18–19
of harmonic oscillator in phase

space, 163–164
of integration, 47–48
of local maxima, 78
of local minima, 77
of simple harmonic motion, 42
of trigonometric functions, 21
of vector, 24
of velocity field, 165
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Gravitational potential energy, 
215–216

Gravity/gravitational force, 85–86,
212–216

acceleration due to, 71–72
in effective potential energy

diagrams, 221–222
effective potential energy function

and, 220–222
inverse-square law of, 222–223
on orbiting Earth, 214–215, 

226–227
properties of, 214

Gyroscope, 185–187

Hamiltonian, 149–152
charged particle in magnetic field

and, 205–208
gauge fields and, 210–211
harmonic oscillator, 156–159
phase space and, 152–155
symmetry of, 157

Hamilton’s equations, 153–155
derivation of, 160–161
Poisson brackets and, 178

Harmonic oscillator, 72–73
Liouville’s theorem and, 170
phase space fluid and, 162–164
time-translation symmetry and,

145–147
Harmonic oscillator Hamiltonian,

156–159
Heat energy, 103–104
Hessian matrix, 82–84

Implicit function, 34
Incompressibility of fluid, 166–167

Liouville’s theorem and, 167–170
Indefinite integral, 50, 51–54

Inertia, law of, 63
Infinitesimal transformations, 

134–136, 137
Inflection, point of, 78–79
Information, conservation of, 9–10
Initial conditions, 13–14
Integral calculus, 47–57

integration by parts, 55–57
Integrals

definite, 49
derivatives and, 50–53
indefinite, 50, 51–54
integration by parts and, 55–57

Integrand, 49
Integration

formulas, 53–54
graph of, 48
by parts, 55–57

Inverse-square law of gravity, 223
Irreversible, 8–9

Kepler, Johannes, 223
Kepler’s laws, 223–227
Kilogram (kg), 68
Kinetic energy, 97–98, 101

defined, 97
Kronecker delta, 175, 181

Lagrange equation of motion for a
charged particle, 203

Lagrangian (L), 107–111
cyclic coordinates and, 125–127
energy conservation and, 147–152
gauge fields and, 210–211
in generalized coordinate system,

123–125
Hamiltonian and, 149–152
Lorentz forces and, 199–203
in polar coordinates, 218–219
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Lagrangian (L), (continued )
symmetry and, 130–136, 137–139
time-translation symmetry and,

146–147
use of, 116–121

Laplace, Pierre-Simon, 1–2, 13, 85
Law of inertia, 63
Law of motion, 3–10
Length, units of, 67
Levi-Civita symbol, 181–182, 

183–184, 193
Limits, 29–30

of integration, 47–48
of precision, 13–14

Linear combination, of basis vectors,
26

Linearity of Poisson Brackets, 
174–175

Liouville, Joseph, 169
Liouville’s theorem, 167–170
Local maximum(a), 78

Hessian and, 82
in higher dimensions, 80, 82

Local minimum(a), 77–78
Hessian and, 82
in higher dimensions, 80–82

Lorentz, H.A., 198
Lorentz forces, 198–199

Lagrangian and, 199–203

Magnetic fields, 194–198
equations of motion and, 203–205
gauge invariance and, 210–211
Hamiltonian of charged particle in,

205–207
motion in uniform, 208–210

Magnetic forces
on charged particles, 198–199
Lagrangian and, 199–203

Magnitude, of vector, 23, 26
Mass, acceleration, force, and, 63–66,

70
Mathematica, 19, 55
Mathematical induction, 176
Matrix, Hessian, 82–84
Maximum, local. See Local

maximum(a)
Mechanical energy, 103
Mechanical momentum, 205–206
Mechanics, axiomatic formulation of,

174–178
Meter (m), 67
Meters per second (m/s), 68
Minimizing functions, 76–79
Minimum

global, 77
local (see Local minimum(a))

Minus-first law, 8–10
Mixed partial derivatives, 76
Momentum(a)

angular (see Angular momentum)
canonical, 203–204, 205–207
conjugate, 123–125, 126–127
conservation of, 92–94, 139–140
defined, 90–91
generalized, 123–125
mechanical, 205–206
phase space and, 90–92

Momentum space, 91
Motion

Aristotle’s law of, 58–63
circular, 44–46
examples of, 41–46
oscillatory, 41–42
particle, 38–41
simple harmonic, 42–44
in uniform magnetic field, 208–210
See Dynamics; Equations of motion
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Multiplication, of vectors, 24, 27
Multivariable differential calculus,

partial derivatives, 74–76

N-dimensional space
orbit through, 114–115
principle of least action and, 

114–115
6N-dimensional space

conservation of momentum in, 94
motion of system through, 90–92

Newton, Isaac, Kepler’s laws and, 223
Newton-Lorentz equation of motion,

204–205, 207, 210
Newton (N), 69
Newton’s equations of motion, 86–88

solving, 69–73
Newton’s first law of motion, 63–64,

70
Newton’s law of gravitation, 214
Newton’s second law of motion, 66,

70
Newton’s third law of motion, 92–93,

139
Noether, Emmy, 130
Nonconservative forces, 99
Nuclear energy, 103, 104

Open systems, 2
Orbit, 114–115

circular, 222–223, 226–227
elliptical, 223–225

Origin, 15
Orthogonal vectors, 28
Oscillatory motion, 41–42

Partial derivatives, 74–76
Hessian matrix and, 82

Partial differentiation

minimizing functions and, 79–84
partial derivatives, 74–76
stationary points and, 76–84

Particle motion, 38–41
examples of, 41–46

Particles
force on charged, 198–199
gravitational force on, 214
Hamiltonian of charged, 205–208
on a line, Hamilton’s equations for,

155
rate of change of momentum of,

93–94
See Systems of particles

Passive change of coordinates, 
130–131

Period of motion, 45
Phase space, 90–92

Hamiltonian and, 152–155
harmonic oscillator in, 158–159
infinitesimal transformation of, 188

Phase space fluid, 162–164
flow and divergence, 165–167
Liouville’s theorem and, 167–170

Phi (f), 19
Plane

Earth’s orbit in, 216–217
Planetary orbits

central forces and, 212–215
Kepler’s laws and, 223–227
See Earth’s orbit

Plotting points, 18
Point(s), 16

of inflection, 78–79
plotting, 18
stationary, 76–79

Poisson brackets, 171–173
angular momentum and, 179–181,

182–187
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Poisson brackets (continued )
rotors and precession and, 183–187
rules for, 174–178
symmetry and conservation and,

187–189
Polar coordinates, 124, 217–218

Euler-Lagrange equations in, 
124–125

Lagrangian in, 121, 218–219
Position

acceleration and, 44, 46
in phase space, momentum and, 91
representing, 38
velocity as rate of change of, 39–40

Potential energy
effective potential energy diagrams,

221–223
force and, 95–99
gravitational, 215–216
in more than one dimension, 

99–103
Potential energy principle, 96
Pound (lb), 69
Powers, derivatives of, 33–34
Precession, 183–187
Principle of least action, 102, 

105–127
advanced mechanics, 105–107
cyclic coordinates, 125–127
derivation of the Euler-Lagrange

equation, 111–114
generalized coordinates and

momenta, 121–125
Lagrangian and, 107–111
N-dimensional space and, 

114–115
reasons for using, 116–121

Product rule, 35, 138
Pythagorean theorem, 23, 26

Radian, 19, 20
Radiation energy, 103–104
Radius, of planet’s orbit, 222–223,

226–227
Rates of change, 30

of momentum of particles, 93–94
of potential energy, 98
of total energy, 98–99
See also Differential calculus

Reaction, action and, 93–94, 139
Reference frame, 18
Relative motion, 116–121
Resolving power of an experiment, 14
Reversed time, 61–62
Reversible, 2, 8

dynamical laws and, 8–10
Right triangle

drawn in circle, 21, 22
relation among three sides of, 20
trigonometric functions and, 20

Rotation
of frames of reference, 118–121
transformations of, 134–135

Rotation symmetry
about the origin, 216
conservation law and, 139, 140
conservation of angular momentum

and, 178–179, 184
Rotors, 183–187

Saddle point, 80, 82
Hessian and, 82

Scalar, 24, 26
Scalar fields, 190–191, 194
Second derivatives, 82

stationary points and, 83–84
Second-derivative test, 79
Second-order partial derivative, 75–76
Second (s), 17, 67
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Sigma (s), 5
Sigma (S), 49
Simple harmonic motion, 42
Sine (sin), 20, 21, 23
Speed, 40
Spring balance, 64–66
State-space

defined, 2–3
dynamical systems and, 3–8
infinite systems and, 10–12, 14
system of particles and, 88–90

Stationary flow, 166
Stationary points, 77–79

in higher dimensions, 79–84
Stroboscopic, 3
Subtraction, of vectors, 25
Summa (∫), 49
Sum rule, 34
Symmetry

antisymmetry of Poisson Brackets,
174

consequences of, 137–139
conservation and, 178–181, 

187–189
conservation law and, 139–144
defined, 131
examples of, 130–136
general, 136–137
rotation, 136, 140, 143, 178–181,

184–185
time-translation, 145–147
translation, 132–133

Systems, 2–8
closed, 2
dynamical, 3, 10–12
open, 2

Systems of particles, 85–88
action, reaction, and conservation

of momentum and, 92–94

momentum and phase space and,
90–92

space of states of, 88–90

Tangent (tan), 20, 21, 23
Theta (u), 19
Time

Aristotle’s equations of motion and,
60–63

assumptions about, 17–18
direction of, 17
reversed, 62
units of, 17, 67

Time derivative, 39–41
Time translation, 146
Time-translation invariance, 146–147
Time-translation symmetry, 145–147
Trace, 82
Trajectory

determining from equations of
motion, 105–107

Lagrangians and, 107–111
of particle, 38
throughN-dimensional space, 

114–115
through phase space, 155

Transformations
continuous, 134, 137
coordinate, 130–135
gauge, 197, 201, 202, 211
infinitesimal, 134–136, 137

Translation, transformations of, 134
Translation symmetry, 132–133
Trigonometric functions, 19–23

oscillatory motion and, 41–42

Unitarity, 170
Units

of acceleration, 68
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Units (continued )
of distance, 16
of force, 68–69
of length, 16, 67
of mass, 68
of time, 17, 67
of velocity, 67

Unit vectors, 25

Vector equations, 66
Vector fields, 190–191

divergence of, 167, 192–194
magnetic fields and, 194–195

Vector potential, 195–197
equation of motion and, 

204–205
Lagrangian and, 200
Lorentz force and, 201

Vectors, 23–28
addition of, 24–25, 27
basis, 25, 26
dot product, 27
in component form, 25–26
linear combinations, 25–26
magnitude, 24
multiplication by a scalar, 24, 26
orthogonal, 28

subtraction of, 25
unit, 25

Velocity
acceleration and, 40–41, 42–46
of circular orbit, 44–45
Coriolis force and, 120
force and, 58–60
Lagrangian and, 109, 122
momentum and, in phase space,

90–92
of particle, 38–41, 42–46
representing, 39–40
state-space of system of particles

and, 88–90
units of, 68

Velocity-dependent forces, 198
Velocity field, 165–166
Viscous drag coefficient, 63

x-axis, 15
x-coordinate, 16

y-axis, 15
y-coordinate, 16

z-axis, 15
z-coordinate, 16
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